Skip to main content
Log in

Investigations on microstructure, electrical and magnetic properties of Ni–Zn–Ga spinel ferrites

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Two spinel ferrite samples Ni0.7Zn0.3GayFe2–yO4 (y = 0.5, 1.0) were prepared by both ceramic and citrate methods. X-ray diffraction patterns indicated a single phase of cubic structure for all the samples that have a space group Fd-3m. Rietveld analysis using MAUD software for all samples showed that the lattice parameter (a) decreases, while oxygen parameter (U) and strain (ɛ) increase by increasing the amount of Ga. A marked increase in the frequency bands in both the tetrahedral and octahedral sites was observed in the vibrational frequency bands of Fourier transform infrared spectra. Mössbauer effect (ME) spectra recorded at room temperature for the bulk sample (prepared by ceramic method) with lower concentrations of Ga3+ (y = 0.5) consist of two Zeeman sextets. ME spectra for the other bulk sample (y = 1.0) and the two samples in nanoscale (prepared by citrate method) can be fitted by one and two doublets due to the paramagnetic and superparamagnetic behaviour, respectively. Vibrating sample magnetometer measurements showed that the saturation magnetization (Ms) obtained from the hysteresis loop is decreased by increasing Ga3+ concentration for all the samples. The coercivity (Hc) is inversely proportional to the particle size (D) for bulk samples. Nevertheless, Hc of the nanoscale samples enhanced by increasing the particle size. The size dependence of Hc is an indication of the superparamagnetic characteristics supported by ME. The ac electrical conductivity (ln \( \sigma \)), dielectric constant (ε′) and dielectric loss tangent (tan δ) were studied at different frequencies and temperatures for the investigated samples. The obtained results showed that the conductivity for all samples increases with increasing temperature in a behaviour similar to that of the most semi-conductor materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Jiang K, Li K, Peng C and Zhu Y 2012 J. Alloys Compd. 6 541

    Google Scholar 

  2. Sohn B H and Cohen R E 1997 Chem. Mater. 9 264

    Article  CAS  Google Scholar 

  3. Mathew T, Malwadkar S, Pai S, Sharanappa N and Sebastian C P 2003 Catal. Lett. 91 217

    Article  CAS  Google Scholar 

  4. Georgi T N and Vencislav C V 2009 Earth Planet. Sci. 1 1357

    Article  Google Scholar 

  5. Suresh G and Misra R D K 2006 J. Mater. Sci. Technol. 22 845

  6. Pardavi-Horvath M 2000 J. Magn. Magn. Mater. 215 171

    Article  Google Scholar 

  7. Raul V 2012 Phys. Res. Int. 2012 9

    Article  Google Scholar 

  8. Li Z W, Guoqing L, Chen L, Yuping W and Ong C K 2006 J. Appl. Phys. 6 99

    Google Scholar 

  9. Feng Y B, Qiu T, Shen C Y and Li X-Y 2006 IEEE Trans. Mag. 42 363

    Article  CAS  Google Scholar 

  10. Zein K H, Mohamed B M, Hamdeh H H and Ahmed M A 2015 J. Alloys Compd. 618 755

  11. Hamdy Sh, Mohamed B M and Ata-Allah S S 2019 J. Supercond. Nov. Magn. 32 115

  12. Lutterotti L, Matthies S and Wenk H R 1999 in J A Spunar (ed), MAUD (material analysis using diffraction): a user friendly java program for Rietveld texture analysis and more, texture of materials: Proceeding of ICOTOM14, National Research Council of Canada, Ottawa, p 1599; IUCr: Newsl. CPD 21 (1999) 14

  13. Grobe G 1992 MOS-90, Version 2.2 manual and program documentation, second edn

  14. Hashhash A and Kaiser M 2016 J. Electron. Mater. 45 462

    Article  CAS  Google Scholar 

  15. Mohamed B M and Yehia M 2014 J. Alloys Compd. 615 181

  16. Chien-Yie T, Yi-Chun C and Chien-Ming L 2018 Materials 11 2274

    Article  Google Scholar 

  17. Imama N G and Mohamed B M 2014 Superlattices Microstruct. 73 203

  18. Weil L, Bertaut E F and Bochirol L 1950 J. Phys. Radium 11 208

    Article  CAS  Google Scholar 

  19. Karimat E-S, Mohamed B M, Hamdy Sh and Ata Allah S S 2017 J. Magn. Magn. Mater. 423 291

  20. Binu P J, Ashok K, Pant R P, Sukvir S and Mohammed E M 2011 Bull. Mater. Sci. 34 1345

    Article  CAS  Google Scholar 

  21. Hashhash A, Yehia M, Ismail S M and Ata-Allah S S 2014 J. Supercond. Nov. Magn. 27 2305

  22. Mazena S A, Mansoura S F, Dhahri E, Zaki H M and Elmosalam T A 2009 J. Alloys Compd. 470 294

    Article  Google Scholar 

  23. Utpal B and Vishu S D 1993 J. Mater. Chem. 3 299

  24. Labde B K, Madan C S and Shamkuwar N R 2003 Mater. Lett. 57 1651

    CAS  Google Scholar 

  25. Minghe H, Xuan X, Hao Y and Songqin L 2012 (ESI) RSC Adv. 2 12844

  26. Lili X, Jing Z, Lixia C, Xiaorong W, Pengdao C, Liyu Z et al 2014 RSC Adv. 4 33269

    Article  Google Scholar 

  27. Jingshun Z, Mi L, Yunqiao P, Arthur J R and Chang G Y 2020 Appl. Sci. 10 4345

    Article  CAS  Google Scholar 

  28. Lawrence K, Pawan K, Amarendra N and Manoranjan K 2013 Int. Nano Lett. 8 12

    Article  Google Scholar 

  29. Amer M A, Meaz T, Hashhash A, Attalah S and Fakhry F 2015 J. Alloys Compd. 649 712

  30. Hashhash A, Imam N G, Ismail S M and Yehia M 2015 J. Electron. Mater. 44 3833

  31. Lemine O M, Bououdina M, Sajieddine M, Al-Saie A M, Shafi M, Khatab A et al 2011 Physica B 406 1989

    Article  CAS  Google Scholar 

  32. Ata-Allah S S and Fayek M K 2000 J. Phys. Chem. Solids 61 1529

    Article  CAS  Google Scholar 

  33. Ata-Allah S S 2004 J. Magn. Magn. Mater. 284 227

    Article  CAS  Google Scholar 

  34. Koops C G 1951 Phys. Rev. 82 121

    Article  Google Scholar 

  35. Hashim M, Alimuddin, Shirsath S E, Kumar S, Kumar R, Roy A S et al 2013 J. Alloys Compd. 549 348

  36. Khan M A, Islam M U, Qbal M A, Ahmad M, Din M F, Murtaza G et al 2014 Ceram. Int. 40 3571

    Article  CAS  Google Scholar 

  37. Abdul S F, Sheikh A D and Mathe V L 2010 J. Alloys Compd. 502 231

  38. Ravinder D, Mohan G R, Prankishan N and Sagar D R 2000 Mater. Lett. 44 256

    Article  CAS  Google Scholar 

  39. Ismael H, ElNimr M K, Abou El Ata A M, El Hiti M A, Ahmed M A and Murakhowskii A A 1995 J. Magn. Magn. Mater. 150 403

  40. Ata-Allah S S, Fayek M K, Sayed H A and Yehia M 2005 Mater. Chem. Phys. 92 278

    Article  CAS  Google Scholar 

  41. Ata-Allah S S 2004 Mater. Chem. Phys. 87 378

    Article  CAS  Google Scholar 

  42. El Hiti M A, Ahmed M A, Mosaad M M and Attia S M 1995 J. Magn. Magn. Mater. 150 399

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh Hamdy.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdy, S., Ismail, S.M. & Hashhash, A. Investigations on microstructure, electrical and magnetic properties of Ni–Zn–Ga spinel ferrites. Bull Mater Sci 44, 29 (2021). https://doi.org/10.1007/s12034-020-02311-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02311-3

Keywords

Navigation