Skip to main content
Log in

Promotion of bone repair of rabbit tibia defects induced by scaffolds of \(\hbox {P(VDF-TrFE)/BaTiO}_{3}\) composites

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this work, scaffolds made of a novel experimental 0–3 type composite were implanted onto non-critical defects in rabbit tibiae. This work discusses the bone repair promoted by polyvinylidene fluoride-trifluoroethylene \(\hbox {P(VDF-TrFE)/barium titanate (BaTiO}_{3}\)) composite that scaffolds with 10 vol% \(\hbox {BaTiO}_{3}\). Prior to implant surgery, the \(\hbox {P(VDF-TrFE)/BaTiO}_{3}\) scaffolds, moulded into a membrane disk, were subjected to a cytotoxicity test (ASTM F895-84). A standardized transverse osteotomy was made with the following dimensions: 4.5 mm in width by 9 mm in length, at the proximal tibial metaphysis, in adult male rabbits, by using a cylindrical drill, cooled with a physiologic solution. These critical defects were filled with blood clot on the left tibiae (control group), whereas the right tibiae were covered with composite scaffolds, measuring 5 mm in thickness and 10 mm in diameter (experimental group); \(n = 12\) for each group. After 21 days, the rabbits were sacrificed and the tibiae bone fragments were conducted to demineralization routines, from fixation and stain procedures to histological analysis. The scaffolds promote the growth of the bone, resulting in an increased repair with callus formation around the scaffold and high mitotic activity at newly formed bones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang Y, Gandhi A A, Zeglinski J, Gregor M and Tofail S A M 2012 IEEE Trans. Dielectr. Electr. Insul. 19 1151

    Article  CAS  Google Scholar 

  2. Hastings G W and Mahmud F A 1991 J. Mater. Sci. Mater. Med. 2 118

    Article  Google Scholar 

  3. Ghiasi M S, Chen J, Vaziri A, Rodrigues E K and Nazarian A 2017 J. Bone Rep. 6 87

    Article  Google Scholar 

  4. Fukada E, Takamatsu T and Yasuda I 1975 Jpn. J. Appl. Phys. 14 2079

    Article  Google Scholar 

  5. Baxter F R, Bower C R, Turner I G and Dent A C 2010 Ann. Biomed. Eng. 38 2079

    Article  CAS  Google Scholar 

  6. Ribeiro C, Sencadas V, Correia D M and Lanceros-Méndez S 2015 Colloids Surf. B Biointerfaces 136 46

    Article  CAS  Google Scholar 

  7. Bolbasov E N, Popkov D A, Popkov E N, Gorbach E N, Khlusov I A, Golovkin A S et al 2017 Mater. Sci. Eng. C: Mater. Biol. Appl. 75 207

    Article  CAS  Google Scholar 

  8. Beloti M M, de Oliveira P T, Gimenes R, Zaghete M A, Bertolini M J and Rosa A L 2006 J. Biomed. Mater. Res. A 79 282

    Article  Google Scholar 

  9. Lopes H B, Santos T S, de Oliveira F S, Freitas G P, de Almeida A L, Gimenes R et al 2014 J. Biomater. Appl. 29 104

    Article  Google Scholar 

  10. Scalize P H, Bombonato-Prado K F, de Sousa L G, Rosa A L, Beloti M M, Semprini M et al 2016 J. Mater. Sci.: Mater. Med. 28 180

    Article  Google Scholar 

  11. Pärssinen J, Hammarén H, Rahikainen R, Sencadas V, Ribeiro C, Vanhatupa S et al 2015 J. Biomed. Mater. Res. 103 919

    Article  Google Scholar 

  12. Frias C, Reis J, Capela e Silva F, Potes J, Simões J and Marques A T 2010 J. Biomech. 43 1061

    Article  CAS  Google Scholar 

  13. Damaraju S M, Wu S, Jaffe M and Arinzeh T L 2013 Biomed. Mater. 8 1

    Article  Google Scholar 

  14. Martins P M, Ribeiro S, Ribeiro C, Sencadas V, Gomes A C, Gama F M et al 2013 RSC Adv. 3 17938

    Article  CAS  Google Scholar 

  15. Young T-H, Chang H-H, Lin D-J and Cheng L-P 2010 J. Membr. Sci. 350 32

    Article  CAS  Google Scholar 

  16. Jianqing F, Huipin Y and Xingdong Z 1997 Biomaterials 18 1531

    Article  Google Scholar 

  17. Zanfir V, Voicu G, Busuioc C, Jinga S I, Albu M G and Iordache F 2016 Mater. Sci. Eng. C: Mater. Biol. Appl. 62 795

    Article  CAS  Google Scholar 

  18. Teixeira L N, Crippa G E, Trabuco A C, Gimenes R, Zaghete M A, Palioto D B et al 2010 Acta Biomater. 6 979

    Article  CAS  Google Scholar 

  19. Teixeira L N, Crippa G E, Gimenes R, Zaghete M A, de Oliveira P T, Rosa A L et al 2011 J. Mater. Sci.: Mater. Med. 22 151

    Article  CAS  Google Scholar 

  20. Freitas G P, Lopes H B, Almeida A L G, Abuna R P F, Gimenes R, Souza L E B et al 2017 Calcif. Tissue Int. 101 312

    Article  CAS  Google Scholar 

  21. Li Y, Dai X, Bai Y, Liu Y, Wang Y, Liu O et al 2017 Int. J. Nanomed. 12 4007

    Article  CAS  Google Scholar 

  22. Hsiang H-I, Lin K-Y, Yen F-S and Hwang C-Y 2001 J. Mater. Sci. 36 3809

    Article  CAS  Google Scholar 

  23. Seman C, Zarida C N, Zamzuri Z, Sharifudin M A, Ahmad A C, Awang M S et al 2018 Int. Med. J. Malays. 17 13

  24. Zhao M-D, Huang J-S, Zhang X-C, Gui K-K, Xiong M, Yin W-P et al 2016 PLoS One 11 1

    Google Scholar 

Download references

Acknowledgements

We would like to thank the Research and Support Foundation of Minas Gerais (FAPEMIG), Grant TEC-APQ-03013-15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Gimenes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gimenes, R., Zaghete, M.A., Espanhol, M. et al. Promotion of bone repair of rabbit tibia defects induced by scaffolds of \(\hbox {P(VDF-TrFE)/BaTiO}_{3}\) composites. Bull Mater Sci 42, 235 (2019). https://doi.org/10.1007/s12034-019-1914-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1914-1

Keywords

Navigation