Skip to main content

Advertisement

Log in

Electrically Active Bioceramics: A Review of Interfacial Responses

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Electrical potentials in mechanically loaded bone have been implicated as signals in the bone remodeling cycle. Recently, interest has grown in exploiting this phenomenon to develop electrically active ceramics for implantation in hard tissue which may induce improved biological responses. Both polarized hydroxyapatite (HA), whose surface charge is not dependent on loading, and piezoelectric ceramics, which produce electrical potentials under stress, have been studied in order to determine the possible benefits of using electrically active bioceramics as implant materials. The polarization of HA has a positive influence on interfacial responses to the ceramic. In vivo studies of polarized HA have shown polarized samples to induce improvements in bone ingrowth. The majority of piezoelectric ceramics proposed for implant use contain barium titanate (BaTiO3). In vivo and in vitro investigations have indicated that such ceramics are biocompatible and, under appropriate mechanical loading, induce improved bone formation around implants. The mechanism by which electrical activity influences biological responses is yet to be clearly defined, but is likely to result from preferential adsorption of proteins and ions onto the polarized surface. Further investigation is warranted into the use of electrically active ceramics as the indications are that they have benefits over existing implant materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Baxter, F. R., I. G. Turner, C. R. Bowen, J. P. Gittings, and J. B. Chaudhuri. An in vitro study of electrically active hydroxyapatite-barium titanate ceramics using Saos-2 cells. J. Mater. Sci. Mater. Med. 20(8):1697–1708, 2009.

    Article  PubMed  CAS  Google Scholar 

  2. Beloti, M. M., P. T. de Oliveira, R. Gimenes, M. A. Zaghete, M. J. Bertolini, and A. L. Rosa. In vitro biocompatibility of a novel membrane of the composite poly(vinylidene-trifluoroethylene)/barium titanate. J. Biomed. Mater. Res. 79A(2):282–288, 2006.

    Article  CAS  Google Scholar 

  3. Best, S., A. Porter, E. Thian, and J. Huang. Bioceramics: past, present and for the future. J. Eur. Ceram. Soc. 28(7):1319–1327, 2008.

    Article  CAS  Google Scholar 

  4. Black, J. Biological Performance of Materials: Fundamentals of Biocompatibility. Boca Raton: CRC Taylor & Francis, 2006.

    Google Scholar 

  5. Bodhak, S., S. Bose, and A. Bandyopadhyay. Electrically polarized HAp-coated Ti: in vitro bone cell–material interactions. Acta Biomater. 2009. doi:10.1016/j.actbio.2009.08.008.

  6. Callegeri, B., and W. D. Belangero. Analysis of the interface formed among the poli (viniilidene) fluoride (piezoelectric and non piezoelectric) and the bone tissue of rats. Acta Orthop. Bras. 12(3):160–166, 2004.

    Google Scholar 

  7. Cowin, S. C., and M. L. Moss. Mechanosensory mechanisms in bone. In: Bone Mechanics Handbook, edited by S. C. Cowin. Boca Raton: CRC Press, 2001.

    Google Scholar 

  8. Cowin, S., S. Weinbaum, and Y. Zeng. A case for bone canaliculi as the anatomical site of strain generated potentials. J. Biomech. 28(11):1281–1297, 1995.

    Article  PubMed  CAS  Google Scholar 

  9. Davies, J. E. The importance and measurement of surface charge species in cell behaviour at the biomaterial interface. In: Surface Characterisation of Biomaterials, edited by R. D. Ratner. Amsterdam: Elsevier, 1988.

    Google Scholar 

  10. Dekhtyar, Y., N. Polyaka, and R. Sammons. Electrically charged hydroxyapatite enhances immobilization and proliferation of osteoblasts. 14th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics, Vol. 20. Berlin, Heidelberg: Springer, 2008.

  11. Feng, H. An investigation on the ceramic composite of the biological piezoelectric implants. In: Polymers and Biomaterials. Amsterdam: Elsevier, 1991.

  12. Feng, J., H. P. Yuan, and X. D. Zhang. Promotion of osteogenesis by a piezoelectric biological ceramic. Biomaterials 18(21):1531–1534, 1997.

    Article  PubMed  CAS  Google Scholar 

  13. Finke, B., F. Luethen, K. Schroeder, P. D. Mueller, C. Bergemann, M. Frant, A. Ohl, and B. J. Nebe. The effect of positively charged plasma polymerization on initial osteoblastic focal adhesion on titanium surfaces. Biomaterials 28(30):4521–4534, 2007.

    Article  PubMed  CAS  Google Scholar 

  14. Frost, H. M. A. 2003 update of bone physiology and Wolff’s Law for clinicians. Angle Orthod. 74(1):3–15, 2004.

    PubMed  Google Scholar 

  15. Fukada, E., and I. Yasuda. On the piezoelectric effect of bone. J. Phys. Soc. Jpn. 12(10):1158–1162, 1957.

    Article  Google Scholar 

  16. Fukada, E., and I. Yasuda. Piezoelectric effects in collagen. Jpn. J. Appl. Phys. 3(2):117–121, 1964.

    Article  CAS  Google Scholar 

  17. Gimenes, R., and M. A. Zaghete. Composites PVDF-TrFE/BT used as bioactive membranes for enhancing bone regeneration. Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices, San Diego, USA, 2004.

  18. Hastings, G. W., and F. A. Mahmud. The electromechanical properties of fluid-filled bone: a new dimension. J. Mater. Sci. Mater. Med. 2(2):118–124, 1991.

    Article  Google Scholar 

  19. Hench, L. L. Bioceramics. J. Am. Ceram. Soc. 81:1705–1728, 1998.

    Article  CAS  Google Scholar 

  20. Hwang, K. S., J. E. Song, J. W. Jo, H. S. Yang, Y. J. Park, J. L. Ong, and H. R. Rawls. Effect of poling conditions on growth of calcium phosphate crystal in ferroelectric BaTiO3 ceramics. J. Mater. Sci. Mater. Med. 13(1):133–138, 2002.

    Article  PubMed  CAS  Google Scholar 

  21. Itoh, S., S. Nakamura, M. Nakamura, K. Shinomiya, and K. Yamashita. Enhanced bone ingrowth into hydroxyapatite with interconnected pores by Electrical Polarization. Biomaterials 27(32):5572–5579, 2006.

    Article  PubMed  CAS  Google Scholar 

  22. Jee, W. S. S. Integrated bone tissue physiology: anatomy and physiology. In: Bone Mechanics Handbook, edited by S. C. Cowin. Boca Raton: CRC Press, 2001.

    Google Scholar 

  23. Jeong, J. H., I. J. Kwak, H. I. Kim, J. L. Ong, H. R. Rawls, and Y. J. Park. The 81st General Session of the International Association for Dental Research. Goteberg, Sweden, 2003.

  24. Kieswetter, K., Z. Schwartz, T. W. Hummert, D. L. Cochran, J. Simpson, D. D. Dean, and B. D. Boyan. Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. J. Biomed. Mater. Res. 32(1):55–63, 1996.

    Article  PubMed  CAS  Google Scholar 

  25. Kizuki, T., M. Ohgaki, M. Katsura, S. Nakamura, K. Hashimoto, Y. Toda, S. Udagawa, and K. Yamashita. Effect of bone-like layer growth from culture medium on adherence of osteoblast-like cells. Biomaterials 24(6):941–947, 2003.

    Article  PubMed  CAS  Google Scholar 

  26. Kobayashi, T., S. Itoh, S. Nakamura, M. Nakamura, K. Shinomiya, and K. Yamashita. Enhanced bone bonding of hydroxyapatite-coated titanium implants by electrical polarization. J. Biomed. Mater. Res. 82A(1):145–151, 2007.

    Article  CAS  Google Scholar 

  27. Kobayashi, T., S. Nakamura, and K. Yamashita. Enhanced osteobonding by negative surface charges of electrically polarized hydroxyapatite. J. Biomed. Mater. Res. 57(4):477–484, 2001.

    Article  PubMed  CAS  Google Scholar 

  28. Li, J., D. Liu, H. Z. Ke, R. L. Duncan, and C. H. Turner. The P2X7 nucleotide receptor mediates skeletal mechanotransduction. J. Biol. Chem. 280(52):42952–42959, 2005.

    Article  PubMed  CAS  Google Scholar 

  29. Li, Z., Y. Qu, X. Zhang, and B. Yang. Bioactive nano-titania ceramics with biomechanical compatibility prepared by doping with piezoelectric BaTiO3. Acta Biomater. 5(6):2189–2195, 2009.

    Article  PubMed  CAS  Google Scholar 

  30. Ma, G. B., and X. Y. Liu. Hydroxyapatite: Hexagonal or monoclinic? Cryst. Growth Des. 9(7):2991–2994, 2009.

    Article  CAS  Google Scholar 

  31. Macginitie, L., G. D. Stanely, W. A. Beiber, and D. D. Wu. Bone streaming potentials and currents depend on anatomical structure and loading orientation. J. Biomech. 30(11–12):1133–1139, 1997.

    Article  PubMed  CAS  Google Scholar 

  32. Maeda, H., K. Tsuda, and E. Fukada. The dependence on temperature and hydration of piezoelectric, dielectric and elastic constants of bone. Jpn. J. Appl. Phys. 15(12):2333–2336, 1976.

    Article  Google Scholar 

  33. Mahabole, M. P., R. C. Aiyer, C. V. Ramakrishna, B. Sreedhar, and R. S. Khairnar. Synthesis, characterization and gas sensing property of hydroxyapatite ceramic. Bull. Mater. Sci. 28(6):535–545, 2005.

    Article  CAS  Google Scholar 

  34. Marino, A., J. Rosson, E. Gonzalez, L. Jones, S. Rogers, and E. Fukada. Quasi-static charge interactions in bone. J. Electrostatics. 21(2–3):347–360, 1988.

    Article  Google Scholar 

  35. Martin, R. B. Toward a unifying theory of bone remodeling. Bone 26(1):1–6, 2000.

    Article  PubMed  CAS  Google Scholar 

  36. McElhaney, J. H. The charge distribution on the human femur due to load. J. Bone. Jt. Surg. 49A:1561–1571, 1967.

    Google Scholar 

  37. Nakamura, S., T. Kobayashi, M. Nakamura, S. Itoh, and K. Yamashita. Electrostatic surface charge acceleration of bone ingrowth of porous hydroxyapatite/beta-tricalcium phosphate ceramics. J. Biomed. Mater. Res. 2009. doi:10.1016/j.actbio.2009.08.008.

  38. Nakamura, M., A. Nagai, Y. Tanaka, Y. Sekijima, and K. Yamashita. Polarized hydroxyapatite promotes spread and motility of osteoblastic cells. J. Biomed. Mater. Res. 2009. doi:10.1002/jbm.a.32404.

  39. Nakamura, M., Y. Sekijima, S. Nakamura, T. Kobayashi, K. Niwa, and K. Yamashita. Role of blood coagulation components as intermediators of high osteoconductivity of electrically polarized hydroxyapatite. J. Biomed. Mater. Res. 79A(3):627–634, 2006.

    Article  CAS  Google Scholar 

  40. Nakamura, S., H. Takeda, and K. Yamashita. Proton transport polarization and depolarization of hydroxyapatite ceramics. J. Appl. Phys. 89(10):5386–5392, 2001.

    Article  CAS  Google Scholar 

  41. Nijweide, P. J., E. H. Burger, J. K. Nulend, and A. Van der Plas. The osteocyte. In: Principles of Bone Biology, edited by J. Bilezikian, Z. Raiz, and T. J. Martin. London: Academic Press, 1996.

    Google Scholar 

  42. Ohgaki, M., T. Kizuki, M. Katsura, and K. Yamashita. Manipulation of selective cell adhesion and growth by surface charges of electrically polarized hydroxyapatite. J. Biomed. Mater. Res. 57(3):366–373, 2001.

    Article  PubMed  CAS  Google Scholar 

  43. Parek, B., M. Joshi, and A. Vaidya. Characterization and inhibitive study of gel-grown hydroxyapatite crystals at physiological temperature. J. Cryst. Growth 310(7–9):1749–1753, 2008.

    Article  CAS  Google Scholar 

  44. Park, J. B., B. J. Kelly, G. H. Kenner, A. F. von Recum, M. F. Grether, and W. W. Coffeen. Piezoelectric ceramic implants: in vivo results. J. Biomed. Mater. Res. 15(1):103–110, 1981.

    Article  PubMed  CAS  Google Scholar 

  45. Park, J. B., A. F. von Recum, G. H. Kenner, B. J. Kelly, W. W. Coffeen, and M. F. Grether. Piezoelectric ceramic implants: a feasibility study. J. Biomed. Mater. Res. 14(3):269–277, 1980.

    Article  PubMed  CAS  Google Scholar 

  46. Qiu, K., X. J. Zhao, C. X. Wan, C. S. Zhao, and Y. W. Chen. Effect of strontium ions on the growth of ROS17/2.8 cells on porous calcium polyphosphate scaffolds. Biomaterials 27(8):1277–1286, 2006.

    Article  PubMed  CAS  Google Scholar 

  47. Raisz, L. G. Physiology and pathophysiology of bone remodeling. Clin. Chem. 45(8 Pt 2):1353–1358, 1999.

    PubMed  CAS  Google Scholar 

  48. Schumacher, D., U. Gross, and V. Strunz. Does piezoceramic influence avian bone formation in the early postoperative phase? Biomaterials 4(3):215–217, 1983.

    Article  PubMed  CAS  Google Scholar 

  49. Seeley, R. R., T. D. Stephens, and P. Tate. Anatomy and Physiology. Boston: McGraw Hill, 2003.

    Google Scholar 

  50. Shimono, T., S. Matsunaga, E. Fukada, T. Hattori, and Y. Shikinami. The effects of piezoelectric poly-L-lactic acid films in promoting ossification in vivo. In Vivo 10(5):471–476, 1996.

    PubMed  CAS  Google Scholar 

  51. Sikavitsas, V. I., J. S. Temenoff, and A. G. Mikos. Biomaterials and bone mechanotransduction. Biomaterials 22(19):2581–2593, 2001.

    Article  PubMed  CAS  Google Scholar 

  52. Silva, C. C., A. F. L. Almeida, R. S. de Oliveira, A. G. Pinheiro, J. C. Góes, and A. S. B. Sombra. Dielectric permittivity and loss of hydroxyapatite screen-printed thick films. J. Mater. Sci. 38(18):3713–3720, 2003.

    Article  CAS  Google Scholar 

  53. Takeda, H., S. Nakamura, K. Yamada, T. Tsuchiya, and K. Yamashita. Dielectric properties of poled hydroxyapatite ceramics. Key Eng. Mater. 181–182:35–40, 2000.

    Article  Google Scholar 

  54. Tofail, S. A. M., D. Haverty, F. Cox, J. Erhart, P. Hána, and V. Ryzhenko. Direct and ultrasonic measurements of macroscopic piezoelectricity in sintered hydroxyapatite. J. Appl. Phys. 105(6), 2009.

  55. Tofail, S. A. M., D. Haverty, K. T. Stanton, and J. B. McMonagle. Structural order and dielectric behaviour of hydroxyapatite. Ferroelectrics 319:117–123, 2005.

    Article  CAS  Google Scholar 

  56. Turner, C. H. Three rules for bone adaptation to mechanical stimuli. Bone 23(5):399–407, 1998.

    Article  PubMed  CAS  Google Scholar 

  57. Wang, W., S. Itoh, Y. Tanaka, A. Nagai, and K. Yamashita. Comparison of enhancement of bone ingrowth into hydroxyapatite ceramics with highly and poorly interconnected pores by electrical polarization. Acta Biomater. 5(8):3132–3140, 2009.

    Article  PubMed  CAS  Google Scholar 

  58. Wolff, J. D. Der gesetz der transformation der knochen. Berlin: A. Hirschwald, 1892.

  59. Xia, Z., and J. T. Triffitt. A review on macrophage responses to biomaterials. Biomed. Mater. 1(1):R1–R9, 2006.

    Article  PubMed  CAS  Google Scholar 

  60. Yamashita, K., K. Kitagaki, and T. Umegaki. Thermal instability and proton conductivity of ceramic hydroxyapatite at high temperatures. J. Am. Ceram. Soc. 78(5):1191–1197, 1995.

    Article  CAS  Google Scholar 

  61. Yamashita, K., N. Oikawa, and T. Umegaki. Acceleration and deceleration of bone-like crystal growth on ceramic hydroxyapatite by electric poling. Chem. Mater. 8(12):2697–2700, 1996.

    Article  CAS  Google Scholar 

  62. Yamashita, K., H. Owada, T. Umegaki, T. Kanazawa, and T. Futagami. Ionic conduction in apatite solid solutions. Solid State Ionics 28–30(1):660–663, 1988.

    Article  Google Scholar 

  63. Zhu, P., Y. Masuda, and K. Koumoto. The effect of surface charge on hydroxyapatite nucleation. Biomaterials 25(17):3915–3921, 2004.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Turner.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baxter, F.R., Bowen, C.R., Turner, I.G. et al. Electrically Active Bioceramics: A Review of Interfacial Responses. Ann Biomed Eng 38, 2079–2092 (2010). https://doi.org/10.1007/s10439-010-9977-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9977-6

Keywords

Navigation