Skip to main content
Log in

Improvement in electro-optical and dielectric characteristics of ZnO nanoparticles dispersed in a nematic liquid crystal mixture

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Reported herein is the effect of dispersion of a fixed amount of 0.5% (wt/wt) ZnO nanoparticles (NPs) in a nematic (E7) liquid crystal (LC) mixture. Dispersion of ZnO NPs results in a significant improvement in electro-optical and dielectric parameters of the nematic mixture. Comparative analysis of undoped and NP-dispersed samples shows a reduced threshold voltage with better transmittance without compromising dielectric permittivity characteristics. In addition, an increase in the contrast ratio, birefringence, alternating-current conductivity and band gap was observed after dispersion of ZnO NPs in LCs. A polarized optical microscopic study of the NP-dispersed sample substantiates a slight increase in nematic–isotropic phase transition temperature of LCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nayek P, Karan S, Kundu S, Lee S H, Gupta S D, Roy S K et al 2012 J. Phys. D: Appl. Phys. 45 235303

    Article  Google Scholar 

  2. de Gennes P G 1974 The physics of liquid crystals (Oxford: Clarendon Press)

    Google Scholar 

  3. Robbie K, Broer D J and Brett M J 1999 Nature 399 764

    Article  CAS  Google Scholar 

  4. Grollau S, Abbott N L and de Pablo J J 2003 Phys. Rev. E 67 051703

    Article  CAS  Google Scholar 

  5. Fukuda J, Yoneya M and Yokoyama H 2002 Phys. Rev. E 65 041709

    Article  Google Scholar 

  6. Loudet C J, Barois P and Poulin P 2000 Nature 407 611

    Article  CAS  Google Scholar 

  7. Andrienko D, Allen M P, Skacej G and Zumer S 2002 Phys. Rev. E 65 041702

    Article  Google Scholar 

  8. Woltmann S J, Jay G D and Crawford G P 2007 Nat. Mater. 6 929

    Article  Google Scholar 

  9. Eskalen H, Ozgan S, Alver U and Kerli S 2015 Acta Phys. Pol. A 127 756

    Article  Google Scholar 

  10. Vardanyan K K, Palazzo E D and Walton R D 2011 Liq. Cryst. 38 709

    Article  CAS  Google Scholar 

  11. Dolgov L, Yaroshchuk O and Lebovka M 2008 Mol. Cryst. Liq. Cryst. 496 212

    Article  CAS  Google Scholar 

  12. Tripathi P K, Misra A K, Pandey K K and Manohar R 2013 Chem. Rapid Commun. 1 20

    CAS  Google Scholar 

  13. Chen W T, Chen P S and Chao C Y 2009 Jpn. J. Appl. Phys. 48 015006

    Article  Google Scholar 

  14. Manohar R, Yadav S P, Srivastava A K and Misra A K 2009 Jpn. J. Appl. Phys. 48 101501

    Article  Google Scholar 

  15. Reznikov Y, Buchnev O, Tereshchenko O, Reshetnyak V, Glushchenko A and West J 2003 Appl. Phys. Lett. 82 1917

    Article  CAS  Google Scholar 

  16. Li F, Buchnev O, Cheon C I, Glushchenko A, Reshetnyak V, Reznikov Y et al 2006 Phys. Rev. Lett. 97 147801

    Article  Google Scholar 

  17. Lee W, Wang C Y and Shih Y C 2004 Appl. Phys. Lett. 85 513

    Article  CAS  Google Scholar 

  18. Lee C W and Shih W P 2010 Mater. Lett. 64 466

    Article  CAS  Google Scholar 

  19. Maleki A, Ara M H M and Saboohi F 2016 Phase Transit. 90 371

    Article  Google Scholar 

  20. Brochard F and de Gennes P G 1970 J. Phys. France 31 691

    Article  CAS  Google Scholar 

  21. Rahman M and Lee W 2009 J. Phys. D: Appl. Phys. 42 063001

    Article  Google Scholar 

  22. Misra A K, Srivastava A K, Shukla J P and Manohar R 2008 Phys. Scr. 78 065602

    Article  Google Scholar 

  23. Allagulov A I, Pikin S A and Chigrinov V G 1989 Liq. Cryst. 5 1099

    Article  Google Scholar 

  24. Zennyoji M, Yokoyama J, Takanishi Y, Ishikawa K, Takezoe H and Itoh K 1998 Jpn. J. Appl. Phys. 37 6071

    Article  CAS  Google Scholar 

  25. Lagerwall S T 1999 Ferroelectric and antiferroelectric liquid crystals (Weinhelm: Wiley-VCH) p 200

  26. Wu P C, Yang S Y and Lee W 2016 J. Mol. Liq. 218 150

    Article  CAS  Google Scholar 

  27. Tomylko S, Yaroshchuk O, Kovalchuk O, Maschke U and Yamaguchi R 2012 Ukr. J. Phys. 5 239

    Google Scholar 

  28. Singh U B, Dhar R, Dabrowski R and Pandey M B 2014 Liq. Cryst. 41 953

    Article  CAS  Google Scholar 

  29. Singh U B, Dhar R, Dabrowski R and Pandey M B 2013 Liq. Cryst. 40 774

    Article  CAS  Google Scholar 

  30. Kurochkin O, Mavrona E, Apostolopoulos V, Blach J-F, Henninot J-F, Kaczmarek M et al 2015 Appl. Phys. Lett. 106 043111

    Article  Google Scholar 

  31. Roy A, Pathak G, Herman J, Inamdar S R, Srivastava A and Manohar R 2018 Appl. Phys. A 124 273

    Article  Google Scholar 

  32. Malik A, Choudhary A, Silotia P and Biradar A M 2011 J. Appl. Phys. 110 064111

    Article  Google Scholar 

  33. Al-Zangana S, Turner M and Dierking I 2017 J. Appl. Phys. 121 085105

    Article  Google Scholar 

  34. Kumar P, Debnath S, Rao N V S and Sinha A 2018 J. Phys. Condens. Matter 30 095101

    Google Scholar 

  35. Khushboo, Sharma P, Malik P and Raina K K 2017 Liq. Cryst. 44 1717

  36. Prasad A and Das M K 2010 J. Phys. Condens. Matter 22 195106

    Google Scholar 

  37. West J L, Zhang G and Glushchenko A 2005 Appl. Phys. Letts. 86 031111

    Article  Google Scholar 

  38. Pande M, Tripathi P K, Gupta S K, Manohar R and Singh S 2015 Liq. Cryst. 42 1465

    Article  CAS  Google Scholar 

  39. Basu R and Shalov S A 2017 Phys. Rev. E. 96 012702

    Article  Google Scholar 

  40. Mavrona E, Chodorow U, Barnes M E, Parka J, Palka N, Saitzek S et al 2015 AIP Adv. 5 077143

    Article  Google Scholar 

  41. Montgomery G P Jr and Vaz N A 1987 Appl. Opt. 26 738

    Article  Google Scholar 

  42. Raina K K, Kumar P and Malik P 2006 Bull. Mater. Sci. 29 599

    Article  CAS  Google Scholar 

  43. Singh D P, Pandey S, Gupta S K, Manohar R, Daoudi A, Sahraoui A H et al 2016 J. Lumin. 173 250

    Article  CAS  Google Scholar 

  44. Porov P, Chandel V S and Manohar R 2016 Trans. Electr. Electron. Mater. 17 69

    Article  Google Scholar 

  45. Koneracka M, Kellnerova V, Kopcansky P and Kuczynski T 1995 J. Magn. Magn. Mater. 140 1455

    Article  Google Scholar 

  46. Cole K S and Cole R H 1941 J. Chem. Phys. 9 341

    Article  CAS  Google Scholar 

  47. Gouda F, Skarp K and Lagerwall S T 1991 Ferroelectric 113 165

    Article  CAS  Google Scholar 

  48. Dhar R 2004 Ind. J. Pure Appl. Phys. 42 56

    CAS  Google Scholar 

  49. Chaudhary A, Malik P, Mehra R and Raina K K 2012 Phase Transit. 85 244

    Article  CAS  Google Scholar 

  50. Srivastava S L and Dhar R 1996 Radiat. Phys. Chem. 47 287

    Article  CAS  Google Scholar 

  51. Khushboo, Sharma P, Malik P and Raina K K 2016 Liq. Cryst. 43 1671

    Article  CAS  Google Scholar 

  52. Hassanien A S and Akl Alaa A 2016 Superlattices Microstruct. 89 153

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the Director, NIT Jalandhar for continuous encouragement and support. The authors also thank DST, SERB and CSIR India for financial support under the Project Numbers EMR/2016/003560 and CSIR/03-1451/18/EMR-II, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Malik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Malik, P., Dhar, R. et al. Improvement in electro-optical and dielectric characteristics of ZnO nanoparticles dispersed in a nematic liquid crystal mixture. Bull Mater Sci 42, 215 (2019). https://doi.org/10.1007/s12034-019-1902-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1902-5

Keywords

Navigation