Skip to main content

Advertisement

Log in

Thermodynamic analysis of electrodeposition of copper from copper sulphate

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The free energy of activation of copper electrodeposition from copper sulphate solution is derived in terms of the dehydration energy of copper sulphate, hydration number of copper sulphate, solvated work function of the host metal and coordination number of the host metal on which the copper deposition is carried out. The free energy of activation for copper electrodeposition on 31 different host metals had been evaluated. The trend in the free energy of activation on different metals is studied and feasible electrodeposition of copper for appropriate applications had been suggested. The methodology is extended to obtain the exchange current densities for copper electrodeposition on different surfaces of Pt in acid medium and compared with the existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mararka S P and Gutmann R J 1993 Thin Solid Films 236 257

    Article  Google Scholar 

  2. Lane M W, Murray C E, McFeely F R, Vereecken P M and Rosenberg R 2003 Appl. Phys. Lett. 83 2330

    Article  CAS  Google Scholar 

  3. Zhang J M, Xu K W and Ji V 2002 Appl. Surf. Sci. 187 60

    Article  CAS  Google Scholar 

  4. Anderson J C 1972 Thin Solid Films 12 1

    Article  CAS  Google Scholar 

  5. Granneman E H A 1993 Thin Solid Films 228 1

    Article  CAS  Google Scholar 

  6. Yin K B, Xia Y D, Chan C Y and Zhang W Q 2008 Scr. Mater. 58 65

    Article  CAS  Google Scholar 

  7. Harper M E, Cabra C, Andricacos P C, Gignac L and Noyan I C 1999 J. Appl. Phys. 86 2516

    Article  CAS  Google Scholar 

  8. Wang H, Huang Y, Tan Z and Hu X 2004 Anal. Chim. Acta 526 13

    Article  CAS  Google Scholar 

  9. Podaha E J 2004 Nano Lett. 1 413

    Article  Google Scholar 

  10. Ibanez A and Fatas E 2005 Surf. Coat. Technol. 191 7

    Article  CAS  Google Scholar 

  11. Wijesundera R P, Hidaka M, Koga K, Sakai M and Siripala W 2006 Thin Solid Films 500 241

    Article  CAS  Google Scholar 

  12. Chatterjee A P, Mukhopadhyay A K, Chakraborty A K, Sasmal R N and Lahiri S K 1991 Mater. Lett. 11 358

    Article  CAS  Google Scholar 

  13. Mirkin M V and Nilov A P 1990 J. Electroanal. Chem. 283 35

    Article  CAS  Google Scholar 

  14. Ratsch C and Venables J A 2003 J. Vac. Sci. Technol. A 21 S96

    Article  CAS  Google Scholar 

  15. Schmelzer J W P 2001 J. Colloid Interface Sci. 242 354

    Article  CAS  Google Scholar 

  16. Grujicic D and Pesic B 2002 Electrochim. Acta 47 2901

    Article  CAS  Google Scholar 

  17. Venables J A, Spiller G D T and Hanbucken M 1984 Rep. Prog. Phys. 47 399

    Article  Google Scholar 

  18. Budevski E, Staikov G and Lorenz W 2000 Electrochim. Acta 45 2559

    Article  CAS  Google Scholar 

  19. Scarifker B and Hills G 1983 Electrochim. Acta 28 879

    Article  Google Scholar 

  20. Zainal Z, Kassim A, Hussein M Z and Ching C H 2004 Mater. Lett. 58 2199

    Article  CAS  Google Scholar 

  21. Fenineche N, Coddet C and Saida A 1990 Surf. Coat. Technol. 41 75

    Article  CAS  Google Scholar 

  22. Dulal S M S I, Yun H J, Shin C B and Kim C K 2007 Electrochim. Acta 53 934

    Article  CAS  Google Scholar 

  23. Ruiz A M, Pardave M P and Batina N 2008 Electrochim. Acta 53 2115

    Article  Google Scholar 

  24. Ramirez C, Arce E M, Romo M and Pardave M P 2004 Solid State Ionics 169 81

    Article  CAS  Google Scholar 

  25. Harinipriya S and Subramaniam V R 2008 J. Phys. Chem. B 112 4036

    Article  CAS  Google Scholar 

  26. Harinipriya S and Sangaranarayanan M V 2002 Langmuir 18 5572

    Article  CAS  Google Scholar 

  27. Marcus R A 1956 J. Chem. Phys. 24 966

    Article  CAS  Google Scholar 

  28. Newman J and Alyea T K 2004 Electrochemical systems, chap 8, 3rd edn (New York: Wiley) p 207

  29. Bozzini B, Mele C and D’urzo L 2006 J. Appl. Electrochem. 36 87

  30. Bozzini B, D’urzo L, Re M and De Richardis F 2008 J. Appl. Electrochem. 38 1561

  31. Bozzini B and Sgura I 2006 J. Appl. Electrochem. 36 983

    Article  CAS  Google Scholar 

  32. Markovic N M, Gasteiger H A and Ross P N Jr 1995 Langmuir 11 4098

    Article  CAS  Google Scholar 

  33. Nishihara C, Raspini I A, Kondho H, Shindo H, Kaise M and Nozoye H 1992 J. Electroanal. Chem. 338 299

    Article  CAS  Google Scholar 

  34. Nikolic N D, Popov K I, Pavlovic L J and Pavlovic M G 2007 Sensors 7 1

    Article  CAS  Google Scholar 

  35. Cheol S H, Dong J and Liu M 2003 Adv. Mater. 15 1610

    Article  Google Scholar 

  36. Dima G E, de Vooys A C A and Koper M T M 2003 J. Electroanal. Chem. 15 554

    Google Scholar 

  37. Pletcher D and Poorbedi Z 1979 Electrochim. Acta 24 1253

    Article  CAS  Google Scholar 

  38. Grujicic D and Pesic B 2005 Electrochim. Acta 50 4426

    Article  CAS  Google Scholar 

  39. Li X, Drews T O, Rusli E, Xue F, He Y, Braatz R D et al 2007 J. Electrochem. Soc. 154 D230

    Article  CAS  Google Scholar 

  40. Rusli E, Xue F, Drews T O, Vereecken P, Andracacos P, Deligianni H et al 2007 J. Electrochem. Soc. 154 D584

    Article  CAS  Google Scholar 

  41. Derry D N and Zhong Z J 1989 Phys. Rev. B 39 1940

    Article  CAS  Google Scholar 

  42. Buso-Rogero C, Herrero E, Bandlow J, Comas Vives A and Jacob T 2013 Phys. Chem. Chem. Phys. 15 18671

    Article  CAS  Google Scholar 

  43. Markovic N M, Gasteiger H A and Ross P N Jr 1995 J. Phys. Chem. 99 3411

    Article  CAS  Google Scholar 

  44. Nishihara C and Nozoye H 1995 J. Electroanal. Chem. 386 75

    Article  Google Scholar 

  45. Schroder U, Linke R, Boo J-H and Wnadelt K 1996 Surf. Sci. 352–354 211

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge SRM Institute of Science and Technology for providing necessary computational facilities to carry out this work. We also acknowledge the valuable comments of the reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Harinipriya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 12 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, R., Sudha, V. & Harinipriya, S. Thermodynamic analysis of electrodeposition of copper from copper sulphate. Bull Mater Sci 42, 43 (2019). https://doi.org/10.1007/s12034-018-1712-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1712-1

Keywords

Navigation