Skip to main content
Log in

Preparation and characterization of PAN–KI complexed gel polymer electrolytes for solid-state battery applications

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The free standing and dimensionally stable gel polymer electrolyte films of polyacrylonitrile (PAN): potassium iodide (KI) of different compositions, using ethylene carbonate as a plasticizer and dimethyl formamide as solvent, are prepared by adopting ‘solution casting technique’ and these films are examined for their conductivities. The structural, miscibility and the chemical rapport between PAN and KI are investigated using X-ray diffraction, Fourier transform infrared spectroscopy and differential scanning calorimetry methods. The conductivity is enhanced with the increase in KI concentration and temperature. The maximum conductivity at 30°C is found to be 2.089 × 10−5 S cm−1 for PAN:KI (70:30) wt%, which is nine orders greater than that of pure PAN (< 10−14 S cm−1). The conductivity-temperature dependence of these polymer electrolyte films obeys Arrhenius behaviour with activation energy ranging from 0.358 to 0.478 eV. The conducting carriers of charge transport in these polymer electrolyte films are identified by Wagner’s polarization technique and it is found that the charge transport is predominantly due to ions. The better conducting sample is used to fabricate the battery with configuration K/PAN + KI/I2+ C + electrolyte and good discharge characteristics of battery are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Anji Reddy P and Ranveer Kumar 2012, Intern. J. Polym. Mater. 62 76

    Google Scholar 

  2. MacCallum J R and Vincent C A (eds) 1987 Polymer electrolyte reviews (Amsterdam: Elsevier) p 351

  3. Croce F, Appetecchi G B, Persi L and Scrosati B 1998 Nature 394 456

    Article  Google Scholar 

  4. Armand M B 1983 Solid State Ionics 9-10 745

    Article  Google Scholar 

  5. Berthier C, Gorecki W, Miner M, Armand M B, Chabagno J M and Rigaud P 1983 Solid State Ionics 11 91

    Article  Google Scholar 

  6. Papke B L, Ratner M A and Shriver D F 1981 J. Phys. Chem. Solids 42 493

    Article  Google Scholar 

  7. Balaji Bhargav P, Sarada B A, Sharma A K and Rao V V R N 2009 J. Macromol. Sci. Part A: Pure and Appl. Chem. 47 131

    Article  Google Scholar 

  8. Subba Rao C V, Ravi M, Raja V, Balaji Bhargav P, Sharma A K and Rao V V R N 2012 Iran. Polym. J. 21 531

    Article  Google Scholar 

  9. Sathiyamoorthi R, Chandrasekaran R, Selladurai S and Vasudevan T 2003 Ionics 9 404

    Article  Google Scholar 

  10. Chandra Sekaran R and Selladurai S 2001 J. Solid State Electrochem. 5 355

    Article  Google Scholar 

  11. Sreepathi Rao S, Jaipal Reddy M, Laxmi Narsaiah E and Subba Rao U V 1995 Mater. Sci. Eng.: B 33 173

    Article  Google Scholar 

  12. Yoon H. -K., Chung W. -S. and Jo N. -J. 2004, Electrochim. Acta 50 289

    Article  Google Scholar 

  13. Sreekanth T, Jaipal Reddy M and Subba Rao U V 2001 J. Power Sources 93 268

    Article  Google Scholar 

  14. Huang B, Wang Z, Li G, Huang H, Xue R, Chen L and Wang F 1996 Solid State Ionics 85 79

    Article  Google Scholar 

  15. Patel M, Chandrappa K G and Bhattacharya A J 2008 Electrochim. Acta 54 209

    Article  Google Scholar 

  16. Sekhon S S, Arora N and Agnihotry S A 2000 Solid State Ionics 136–137 1201

    Article  Google Scholar 

  17. Subramania A, Kalyana Sundaram N T and Vijaya Kumar G 2006 J. Power Sources 153 177

    Article  Google Scholar 

  18. Song J Y, Wang Y Y and Wan C C 1999 J. Power Sources 77 183

    Article  Google Scholar 

  19. Sidhu K S, Sekhon S S, Hashmi S A and Chandra S 1993 Eur. Polym. J. 29 779

    Article  Google Scholar 

  20. Ahmad A, Rahman M Y A, Low S P and Hamzah H 2011 Intern. Sch. Res. Netw. 2011 1

    Google Scholar 

  21. Vijaya Kumar K and Suneeta Sundari G 2010 J. Eng. Sci. Technol. 5 130

    Google Scholar 

  22. Rajendran S, Kannan R and Mahendran O 2001 Mater. Lett. 48 331

    Article  Google Scholar 

  23. Hodge R M, Edward G H and Simon G P 1996 Polymer 37 1371

    Article  Google Scholar 

  24. Rajendran S and Mahendran O 2001 Ionics 7 463

    Article  Google Scholar 

  25. Kumar A, Sakia D, Singh F and Avasthi D K 2005 Solid State Ionics 176 1585

    Article  Google Scholar 

  26. Kuo C W, Huang C W, Chen B K, Li W B, Chen P R, Ho T H, Tseng C G and Wu T Y 2013 Intern. J. Electrochem. Sci. 8 3834

    Google Scholar 

  27. Rajendran S, Mahalingam T and Kannan R 2000 Solid State Ionics 130 143

    Article  Google Scholar 

  28. Wang C, Liu Q, Cao Q, Meng Q and Yang L 1992 Solid State Ionics 53-56 1106

    Article  Google Scholar 

  29. Dey A., Karan S, Dey A. and De S K 2011 Mater. Res. Bull. 46 2009

    Article  Google Scholar 

  30. Ravi M, Pavani Y, Kiran Kumar K, Bhavani S, Sharma A K and Narasimha Rao V V R 2011 Mater. Chem. Phys. 130 442

    Article  Google Scholar 

  31. Jacob M M E, Prabaharan S R S and Radhakrishna S 1997 Solid State Ionics 104 267

    Article  Google Scholar 

  32. Wei Pan and Hantao Zou 2008, Bull. Mater. Sci. 31 807

    Article  Google Scholar 

  33. Majid S R and Arof A K 2008 Mol. Cryst. Liq. Cryst. 484 117

    Article  Google Scholar 

  34. Chagnes A, Allouchi H, Carre B, Odou G, Willmann P and Lemordant D 2003 J. Appl. Electrochem. 33 589

    Article  Google Scholar 

  35. Armand M B, Chabagno J M, Duclot M J 1979 Fast ion transport in solids P Vashishta, L N Mundy and G Shenoy (eds) (North Holland, Amsterdam: Elsevier) p 131

  36. Hema M, Selvasekarapandian S, Arunkumar D, Sakunthala A and Nithya H 2009 J. Non-Cryst. Solids 355 84

    Article  Google Scholar 

  37. Ramesh S, Yahana A H and Arof A K 2002 Solid State Ionics 152 291

    Article  Google Scholar 

  38. Miyamoto T and Shibayama K 1973 J. Appl. Phys. 44 5372

    Article  Google Scholar 

  39. Chetia J R, Maullick M, Dutla A and Dass N N 2004 Mater. Sci. Eng. B 107 134

    Article  Google Scholar 

  40. Shriver D F and Ratner M A 1988 Chem. Rev. 88 109

    Article  Google Scholar 

  41. Jaipal Reddy M, Sreekanth T, Chandrasekhar M and Subba Rao U V 2000 J. Mater. Sci. 35 2841

    Article  Google Scholar 

  42. Mohan V M, Bhargav P B, Raja V, Sharma A K and Narasimha Rao V V R 2007 Soft Mater. 5 33

    Article  Google Scholar 

  43. Ramya C S, Savitha T, Selvasekarapandian S and Hiran Kumar G 2005 Ionics 11 436

    Article  Google Scholar 

  44. Mohan V M, Raja V, Sharma A K and Narasimha Rao V V R 2006 Ionics 12 219

    Article  Google Scholar 

  45. Laxmi Narsaiah E, Jaipal Reddy M and Subba Rao U V 1995 J. Power Sources 55 255

    Article  Google Scholar 

Download references

Acknowledgements

Krishna Jyothi is very much thankful to the Department of Science and Technology (DST), Government of India, New Delhi, for awarding her with a Women Scientist’s scheme under DST-WOS (A) program (File No.: SR/WOS-A/PS-52/2011). We also thank Er. Koneru Satyanarayana, President, K L University, and Prof. K Ravindhranath, Department of Chemistry, for their constant support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K VIJAYA KUMAR.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

JYOTHI, N.K., VENKATARATNAM, K.K., MURTY, P.N. et al. Preparation and characterization of PAN–KI complexed gel polymer electrolytes for solid-state battery applications. Bull Mater Sci 39, 1047–1055 (2016). https://doi.org/10.1007/s12034-016-1241-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1241-8

Keywords

Navigation