Skip to main content

Advertisement

Log in

Ionic conductivity and battery characteristic studies of a new PAN-based Na+ ion conducting gel polymer electrolyte system

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Sodium ion conducting gel polymer electrolytes based on polyacrylonitrile (PAN) with ethylene carbonate and dimethyl formamide as plasticizing solvents are prepared by the solution cast technique. These electrolyte films are free standing, transparent and dimensionally stable. Na+ ions are derived from NaI. The structural properties of pure and complex formations have been examined by X-ray diffraction, Fourier transform infrared spectroscopic studies and differential scanning calorimetric studies. The variation of the conductivity with salt concentration ranging from 10 to 40 wt% is studied. The sample containing 30 wt% of NaI exhibits the highest conductivity of 2.35 × 10−4 S cm−1 at room temperature (303 K) and 1 × 10−3 S cm−1 at 373 K. The conductivity–temperature dependence of polymer electrolyte films obeys Arrhenius behavior with activation energy in the range of 0.25–0.46 eV. The transport numbers both electronic (t e) and ionic (t i) are evaluated using Wagner’s polarization technique. It is revealed that the conducting species are predominantly due to ions. The ionic transport number of highest conducting film is found to be 0.991. Solid-state battery with configuration Na/(PAN + NaI)/(I2 + C + electrolyte) is developed using the highest conducting gel polymer electrolyte system and the discharge characteristics of the cell are evaluated over the load of 100 KΩ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R C Agrawal and G P Pandey J. Phys. D Appl. Phys. 41 223001 (2008)

    Article  ADS  Google Scholar 

  2. S Sreepathi Rao, M Jaipal Reddy, E Laxmi Narsaiah, U V Subba Rao Mater. Sci. Eng. B 33 173 (1995)

    Article  Google Scholar 

  3. J Y Kim and S H Kim Solid State Ion. 124 91 (1999)

    Article  Google Scholar 

  4. M Jaipal Reddy, T Sreekanth and U V Subba Rao Solid State Ion. 126 55 (1999)

    Article  Google Scholar 

  5. S A Hashmi and S Chandra Mater. Sci. Eng. B34 18 (1995)

    Article  Google Scholar 

  6. A Bhide and K Hariharan Eur. Polym. J. 43 4253 (2007)

    Article  Google Scholar 

  7. V M Mohan, V Raja, A K Sharma and V V R Narasimha Rao Ionics 12 219 (2006)

    Article  Google Scholar 

  8. S Badr, E Sheha, R M Bayomi and M G El-Shaarawy Ionics 16 269 (2010)

    Article  Google Scholar 

  9. G K Prajapati and P N Gupta Physica B 406 3108 (2011)

    Article  ADS  Google Scholar 

  10. C V Subba Rao, M Ravi, V Raja, P Balaji Bhargav, A K Sharma and V V R Narasimha Rao Iranian Polym. J. 21 531 (2012)

    Article  Google Scholar 

  11. Kuldeep Mishra, S A Hashmi and D K Rai J. Solid State Electochem. 17 785 (2013)

    Article  Google Scholar 

  12. F M Gray Polymer electrolyte reviews-1 (Newyork: Elsevier) ed. J R MacCallum and C A Vincent 139 (1987)

    Google Scholar 

  13. H Huang, L Chen, X Huang and R Xue Electrochim. Acta 37 1671 (1992)

    Article  Google Scholar 

  14. R Xue, H Huang, M Menetrier and L Chen J. Power Sources 44 431 (1993)

    Article  ADS  Google Scholar 

  15. X Huang, L Chen and J Schoonman J. Power Sources 44 487 (1993)

    Article  ADS  Google Scholar 

  16. Z Osman, K B Md Isa, A Ahmad, L Othman Ionics 16 431 (2010)

    Article  Google Scholar 

  17. K Vijaya Kumar, G Suneeta Sundari J. Eng. Sci. Tech. 5 130 (2010)

    Google Scholar 

  18. J B Wagner and C Wagner J. Chem. Phys. 26 1597 (1957)

    Article  ADS  Google Scholar 

  19. S Rajendran, R Kannan and O Mahendran Mater. Lett. 48 331 (2001)

    Article  Google Scholar 

  20. R M Hodge, G H Edward, G P Simon Polymer 37 1371 (1996)

    Article  Google Scholar 

  21. S K Chaurasia, R K Singh and S Chandra J. Polym. Sci. Part B Polym. Phys. 49 291 (2011)

    Article  ADS  Google Scholar 

  22. S K Chaurasia, R K Singh and S Chandra Solid State Ion. 183 32 (2011)

    Article  Google Scholar 

  23. B Huang, Z Wang, L Chen, R Xue, F Wang Solid State Ion. 91 284 (1996)

    Article  Google Scholar 

  24. Z Wang, B Huang, H Huang, R Xue, L Chen, F Wang Spectrochim. Acta Part A 52 691 (1996)

    Article  ADS  Google Scholar 

  25. H W Chen, F C Chang J. Polym. Sci. Part B Polym. Phys. 39 2407 (2001)

    Article  ADS  Google Scholar 

  26. S K Sidhu, S S Sekhon, S A Hashmi and S Chandra Eur. Polym. J. 29 779 (1993)

    Article  Google Scholar 

  27. E Morales and J L Acosta Solid State Ion. 96 99 (1997)

    Article  Google Scholar 

  28. S Ramesh and A K Arof J. Power Sources 99 41 (2001)

    Article  ADS  Google Scholar 

  29. C W Kuo, W B Li, P R Chen, J W Liao, C G Tseng and T YnWu Intern. J. Electrochem. Sci. 8 5007 (2013)

    Google Scholar 

  30. Ch V Subba Reddy, A K Sharma and V V R Narasimha Rao J. Power Sources 111 357 (2002)

    Article  ADS  Google Scholar 

  31. W Pan, H Zou Bull. Mater. Sci. 31 807 (2008)

    Article  Google Scholar 

  32. C S Ramya, S Selvasekarapandian, T Savitha, G Hiran Kumar and P C Angelo Phys. B 393 11 (2007)

    Article  ADS  Google Scholar 

  33. C S Ramya, T Savitha, S Selvasekharapandian and G Hirankumar Ionics 11 436 (2005)

    Article  Google Scholar 

  34. T Miyamoto and K Shibayana J. Appl. Phys. 44 5372 (1973)

    Article  ADS  Google Scholar 

  35. J R Chetia, M Maullick, A Dutta and N N Dass Mater. Sci. Eng. B 107 134 (2004)

    Article  Google Scholar 

  36. K Rama Mohan, V B S Achari, V V R N Rao and A K Sharma Polym. Test. 30 881(2011)

    Article  Google Scholar 

  37. S Sreepathi Rao, M Jaipal reddy, K Narasimha Reddy and U V Subba Rao Solid State Ion. 74 225 (1994)

    Article  Google Scholar 

  38. K Naresh Kumar, T Sreekanth, M Jaipal Reddy and U V Subba Rao J. Power Sources 101 130 (2001)

    Article  ADS  Google Scholar 

  39. N S Mohamed, M Z Zakaria, A M M Ali and A K Arof J. Power Sources 66 169 (1997)

    Article  ADS  Google Scholar 

  40. A Chandra Indian J. Phys. 87(7) 643 (2013)

    Article  ADS  Google Scholar 

  41. A Bhide and K Hariharan Eur. Polym. J. 43 4253 (2007)

    Article  Google Scholar 

  42. P B Bhargav, V M Mohan, A K Sharma and V V R N Rao Ionics 13 173 (2007)

    Article  Google Scholar 

  43. C V Subba Rao, M Ravi, V Raja, P B Bhargav, A K Sharma, V V R N Rao Iranian Polymer J. 21 531 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors N Krishna Jyothi is very much thankful to Department of Science and Technology (DST), Government of India, New Delhi, for awarding her with a Women Scientist’s scheme under DST-WOS (A) program (File No.: SR/WOS-A/PS-52/2011). The authors thank Er. Koneru Satyanarayana, President and Professor Dr. K. Ravindhranath, Professor in Dept. of Chemistry, for their constant support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Krishna Jyothi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishna Jyothi, N., Vijaya Kumar, K., Sunita Sundari, G. et al. Ionic conductivity and battery characteristic studies of a new PAN-based Na+ ion conducting gel polymer electrolyte system. Indian J Phys 90, 289–296 (2016). https://doi.org/10.1007/s12648-015-0758-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0758-9

Keywords

PACS Nos

Navigation