Skip to main content
Log in

Temperature-dependent ionic conductivity and transport properties of LiClO4-doped PVA/modified cellulose composites

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This paper presents the investigation on physicochemical properties and ionic conductivity of LiClO4-doped poly(vinyl alcohol) (PVA)/modified cellulose composites. The percolative behaviour of LiClO4 with dc conductivity (σ dc) for different LiClO4 weight fractions (p) related to transport dimensionality was also focused. The highest ionic conductivity of 9.79 × 10−6 S cm−1 was observed for 20 wt% LiClO4 doping level at room temperature. The activation energies (E g) were estimated using temperature-dependent conductivity, which follows the Arrhenius and Vogel–Tammann–Fulcher (VTF) relation. The dynamic fragility (f) and activation energy (E g) vs. T g of polymer composites using equivalence of the both Williams–Landel–Ferry (WLF) and VTF equations were also correlated. Transport properties such as travel time of ions between sites ( τ o), mobility ( μ), diffusion coefficient (D) and number of transitions per unit time P(E) for normal cationic (Li+) hopping process of LiClO4-doped PVA/mCellulose composites have been investigated using the Rice and Roth model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kunthadong P, Molloy R, Worajittiphon P, Leejarkpai T, Kaabbuathong N and Punyodom W 2015 J. Polym. Environ. 23 107

    Article  Google Scholar 

  2. Ghaffarian V, Mousavi S M, Bahreini M and Afifi M 2012 J. Polym. Environ. 21 1150

    Article  Google Scholar 

  3. Ferry A 1997 J. Phys. Chem. B 101 150

    Article  Google Scholar 

  4. Edman L, Doeff M M, Ferry A, Kerr J and De Jonghe L C 2000 J. Phys. Chem. B 104 3476

    Article  Google Scholar 

  5. Roth B C, McNerny L K, Jager F W and Torkelson M J 2007 Macromolecules 40 2568

    Article  Google Scholar 

  6. Pryamitsyn V and Ganesan V 2010 Macromolecules 43 5851

    Article  Google Scholar 

  7. Nigro B, Ambrosetti G, Grimaldi C, Maeder T and Ryser P 2011 Phys. Rev. B 83 064203

    Article  Google Scholar 

  8. Sidebottom L D 2000 Phys. Rev. B 63 0234301

    Article  Google Scholar 

  9. Hoye S J 2010 Phys. Rev. E 81 061114

    Article  Google Scholar 

  10. Soldera A and Grohens Y 2002 Macromolecules 35 722

    Article  Google Scholar 

  11. Jin X, Zhang S and Runt J 2003 Macromolecules 36 8033

    Article  Google Scholar 

  12. Kesavan M. M C, Rajendran S and Ulaganathan M 2014 Mater. Sci. Eng. B 184 26

    Article  Google Scholar 

  13. Bhajantri R F, Ravindrachary V, Harisha A and Crasta V 2006 Polymer 47 3591

    Article  Google Scholar 

  14. Macias C E, Bodugoz-senturk H and Muratoglu O K 2013 Polymer 54 724

    Article  Google Scholar 

  15. Costa-junior E S, Barbosa-stancioli E F, Mansur A A P, Vasconcelos W L and Mansur H S 2009 Carbohydr. Polym. 76 472

    Article  Google Scholar 

  16. Ramesh S, Shanti R and Morris E 2013 Carbohydr. Polym. 91 14

    Article  Google Scholar 

  17. Basak P and Manorama V S 2004 Solid State Ion 167 113

    Article  Google Scholar 

  18. Li R, Fei J, Cai Y, Li Y, Feng J and Yao J 2009 Carbohydr. Polym. 76 94

    Article  Google Scholar 

  19. Liu D, Sun X, Tian H, Maiti S and Ma Z 2013 Cellulose 20 2981

    Article  Google Scholar 

  20. Hashem M, Sharaf S, El-hady M M A and Hebeish A 2013 Carbohydr. Polym. 95 421

    Article  Google Scholar 

  21. Hameed N, Xiong R, Salim N V and Guo Q 2013 Cellulose 20 2517

    Article  Google Scholar 

  22. Selvakumar M and Bhat D K 2008 J. Appl. Polym. Sci. 110 594

    Article  Google Scholar 

  23. Xiao C and Geng N 2009 Eur. Polym. J. 45 1086

    Article  Google Scholar 

  24. Planes J, Wolter A, Cheguettine Y, Pron A, Genoud F and Nechtschein M 1998 Phys. Rev. B 58 7774

    Article  Google Scholar 

  25. Agrawal R C, Sahu D K, Mahipal Y K and Ashrafi R 2012 Mater. Chem. Phys. 139 410

    Article  Google Scholar 

  26. Karmakar A and Ghosh A 2014 Am. Inst. Phys. Adv. 4 087112

    Google Scholar 

  27. Zhang S, Painter P C and Runt J 2002 Macromolecules 35 8478

    Article  Google Scholar 

  28. Bhargav P B, Mohan V M, Sharma A K and Rao V V R N 2009 Curr. Appl. Phys. 9 165

    Article  Google Scholar 

  29. Zhuang P Y, Li Y L, Fan L, Lin J and Hu Q L 2012 Int. J. Biol. Macromol. 50 658

    Article  Google Scholar 

  30. Zhi M, Xiang C, Li J, Li M and Wu N 2013 Nanoscale 5 72

    Article  Google Scholar 

  31. Chandra A, Bhatt A and Chandra A 2014 Chin. J. Phys. 52 864

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R F BHAJANTRI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

RATHOD, S.G., BHAJANTRI, R.F., RAVINDRACHARY, V. et al. Temperature-dependent ionic conductivity and transport properties of LiClO4-doped PVA/modified cellulose composites. Bull Mater Sci 38, 1213–1221 (2015). https://doi.org/10.1007/s12034-015-1002-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-1002-0

Keywords

Navigation