Skip to main content
Log in

Fabrication and characterization of transparent and biodegradable cellulose/poly (vinyl alcohol) blend films using an ionic liquid

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Biodegradable blends were prepared from cellulose and poly (vinyl alcohol) (PVA) using the ionic liquid (IL) solvent, 1-butyl-3-methylimidazolium chloride. The blends were regenerated into films, fibers and rectangular blocks. The films showed optical transparency throughout the entire composition of the blends. The infrared spectroscopic experiments proved the existence of intermolecular hydrogen bonding interactions between the hydroxyl groups of cellulose and PVA. The miscibility between cellulose and PVA lead to increase in glass transition temperature (T g) and of decrease in crystallinity of the blends. The T g-composition data showed a negative deviation from Fox predictions, however fit well with BCKV model. The addition of PVA improved the tensile strength and elongation at break, considerably plasticizing cellulose. The blends can be degraded completely in soil. Moreover, the IL was completely recycled with high yield after the processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, NY

    Google Scholar 

  • Braun G, Kovacs AJ (1965) In: Prins JA (ed) Proceedings of the international conference, Delft, July, 1964. North-Holland Pub. Co, Amsterdam

  • Brekner M-J, Schneider HA, Cantow H-J (1988) Approach to the composition dependence of the glass transition temperature of compatible polymer blends. 2 The effect of local chain orientation. Die Makromolekulare Chemie 189:2085

    Article  CAS  Google Scholar 

  • Coleman MM, Painter PC (1995) Hydrogen bonded polymer blends. Prog Polym Sci 20:1

    Article  CAS  Google Scholar 

  • Couchman PR, Karasz FE (1978) A classical thermodynamic discussion of the effect of composition on glass-transition temperatures. Macromolecules 11:117

    Article  CAS  Google Scholar 

  • De Kesel C, Lefevre C, Nagy J, David C (1999) Blends of polycaprolactone with polyvinylalcohol: a DSC, optical microscopy and solid state NMR study. Polymer 40:1969

    Article  Google Scholar 

  • Dupont J, de Souza RF, Suarez PAZ (2002) Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 102:3667

    Article  CAS  Google Scholar 

  • Feldstein MM, Roos A, Chevallier C, Creton C, Dormidontova EE (2003) Relation of glass transition temperature to the hydrogen bonding degree and energy in poly(N-vinyl pyrrolidone) blends with hydroxyl-containing plasticizers: 3. Analysis of two glass transition temperatures featured for PVP solutions in liquid poly(ethylene glycol). Polymer 44:1819

    Article  CAS  Google Scholar 

  • Fox TG (1956) Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull Am Phys Soc 1:123

    CAS  Google Scholar 

  • Garrett RH, Grisham CM (2002) Biochemistry, 2nd edn. Higher Education Press, Beijing

    Google Scholar 

  • Gordon M, Taylor JSJ (1952) Ideal copolymers and the second-order transitions of synthetic rubbers. i. non-crystalline copolymers. Appl Chem 2:493

    Google Scholar 

  • Hameed N, Guo Q (2009) Natural wool/cellulose acetate blends regenerated from the ionic liquid 1-butyl-3-methylimidazolium chloride. Carbohydr Polym 78:999

    Article  CAS  Google Scholar 

  • Hameed N, Guo Q (2010) Blend films of natural wool and cellulose prepared from an ionic liquid. Cellulose 17:803

    Article  CAS  Google Scholar 

  • Hameed N, Guo Q, Tay FH, Kazarian SG (2011) Blends of cellulose and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) prepared from the ionic liquid 1-butyl-3-methylimidazolium chloride. Carbohydr Polym 86:94

    Article  CAS  Google Scholar 

  • Imam SH, Greene RV, Zaidi BR (eds) (1999) Biopolymers: utilizing nature’s advanced materials. ACS symposium series, No. 723. American Chemical Society, Washington, DC

  • Kaplan DL (1998) Biopolymers from renewable resources. Springer, New York

    Book  Google Scholar 

  • Konno H, Taylor LSJ (2006) Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. Pharm Sci 95:2692

    Article  CAS  Google Scholar 

  • Kubat J, Pattyrante C (1967) Transition in cellulose in the vicinity of −30° C. Nature 215:390

    Google Scholar 

  • Kubo S, Kadla JF (2003) The formation of strong intermolecular interactions in immiscible blends of poly (vinyl alcohol) (PVA) and lignin. Biomacromolecules 4:561

    Article  CAS  Google Scholar 

  • Kwei TKJ (1984) The effect of hydrogen bonding on the glass transition temperatures of polymer mixtures. Polym Lett Ed 22:307

  • Mayer JM, Kaplan DL, Stote RE, Dixon KL, Shupe AE, Allen AL, McCassie JE (1996) ACS symposium series, chap 13, vol 627, p 159

  • Mikhailov GP, Artyukhov AI, Shevele VA (1976) Molecular mobility in cellulose and its derivatives studied by dielectric and nuclear magnetic resonance methods. Vysokomol Soyed A11:553

    Google Scholar 

  • Nishi T, Wang TT (1975) Melting point depression and kinetic effects of cooling on crystallization in poly (vinylidene fluoride)–poly (methyl methacrylate) mixtures. Macromolecules 8:909

    Article  CAS  Google Scholar 

  • Nishio Y, Manley RSJ (1988) Cellulose-poly (vinyl alcohol) blends prepared from solutions in N,N-dimethylacetamide-lithium chloride. Macromolecules 21:1270

    Article  Google Scholar 

  • Nishio Y, Haratani T, Takahashi T, Manley RS (1989) Miscibility and orientation behavior of poly (vinyl alcohol)/poly (vinyl pyrrolidone) blends. Macromolecules 22:2547

    Article  CAS  Google Scholar 

  • Paranhos CM, Soares BG, Oliveira RN, Pessan LA (2007) Poly (vinyl alcohol)/clay‐based nanocomposite hydrogels: swelling behavior and characterization. Macromol Mater Eng 292:620

    Article  CAS  Google Scholar 

  • Parvin F, Khan MA, Saadat AHM, Khan MAH, Islam JMM, Ahmed M, Gafur MAJ (2011) Preparation and characterization of gamma irradiated sugar containing starch/poly (vinyl alcohol)-based blend films. Polym Environ 19:1013

    Article  CAS  Google Scholar 

  • Ray D, Roy P, Sengupta S, Sengupta S, Mohanty A, Misra MJ (2009) A study of physicomechanical and morphological properties of starch/poly (vinylalcohol) based films. Polym Environ 17:56

    Article  CAS  Google Scholar 

  • Rim PB, Runt JP (1984) Melting point depression in crystalline/compatible polymer blends. Macromolecules 17:1520

    Article  CAS  Google Scholar 

  • Sathasivam K, Mas Haris MRH, Noorsal K (2010) The preparation and characterization of esterified banana trunk fibers/poly (vinyl alcohol) blend film. Polym Plast Tech Eng 49:1378

    Article  CAS  Google Scholar 

  • Sathigari SK (2011) Single step preparation and deagglomeration of itraconazole microflakes by supercritical antisolvent method for dissolution enhancement. Auburn University, Auburn

    Google Scholar 

  • Swamy YB, Venkata Prasad C, Reedy C, Mallikarjuna B, Rao K, Subha M (2011) Interpenetrating polymer network microspheres of hydroxy propyl methyl cellulose/poly (vinyl alcohol) for control release of ciprofloxacin hydrochloride. Cellulose 18:349

    Google Scholar 

  • Takahashi Y, Matsunaga H (1991) Crystal structure of native cellulose. Macromolecules 24:3968

    Article  CAS  Google Scholar 

  • Turner MB, Spear SK, Holbrey JD, Rogers RD (2004) Production of bioactive cellulose films reconstituted from ionic liquids. Biomacromolecules 5:1379

    Google Scholar 

  • Witt MA, Barra GMO, Bertolino JR, Pires ATNJ (2010) Crosslinked chitosan/poly (vinyl alcohol) blends with proton conductivity characteristic. Braz Chem Soc 21:1692

    Article  CAS  Google Scholar 

  • Xiong R, Hameed N, Guo Q (2012) Cellulose/polycaprolactone blends regenerated from ionic liquid 1-butyl-3-methylimidazolium chloride. Carbohydr Polym 90:575

    Article  CAS  Google Scholar 

  • Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272

    Article  CAS  Google Scholar 

  • Zhou WY, Guo B, Liu M, Liao R, Rabie ABM, Jia DJ (2010) Poly(vinyl alcohol)/halloysite nanotubes bionanocomposite films: properties and in vitro osteoblasts and fibroblasts response. Biomed Mater Res Part A 93A:1574

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishar Hameed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hameed, N., Xiong, R., Salim, N.V. et al. Fabrication and characterization of transparent and biodegradable cellulose/poly (vinyl alcohol) blend films using an ionic liquid. Cellulose 20, 2517–2527 (2013). https://doi.org/10.1007/s10570-013-0017-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0017-1

Keywords

Navigation