Skip to main content
Log in

The Role of HSP90 and TRAP1 Targets on Treatment in Hepatocellular Carcinoma

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Hepatocellular Carcinoma (HCC) is the predominant form of liver cancer and arises due to dysregulation of the cell cycle control machinery. Heat Shock Protein 90 (HSP90) and mitochondrial HSP90, also referred to as TRAP1 are important critical chaperone target receptors for early diagnosis and targeting HCC. Both HSP90 and TRAP1 expression was found to be higher in HCC patients. Hence, the importance of HSP90 and TRAP1 inhibitors mechanism and mitochondrial targeted delivery of those inhibitors function is widely studied. This review also focuses on importance of protein–protein interactions of HSP90 and TRAP1 targets and association of its interacting proteins in various pathways of HCC. To further elucidate the mechanism, systems biology approaches and computational biology approach studies are well explored in the association of inhibition of herbal plant molecules with HSP90 and its mitochondrial type in HCC.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

No data were used for the research described in the article.

Abbreviations

BCLC:

Barcelona Clinic Liver Cancer

HCC:

Hepatocellular Carcinoma

MAPK:

Mitogen-activated protein kinase

CFTR:

Cystic fibrosis transmembrane conductance regulator

17AAG:

17-N-allylamino-17-demethoxy geldanamycin

ROS:

Reactive oxygen species

DLCs:

Delocalized lipophilic cations

ETC:

Electron transport chain

HSP75:

Heat shock protein 75

OXPHOS:

Oxidative Phosphorylation

GEO:

Gene expression omnibus

TRAP1:

Tumor necrosis factor receptor-associated protein 1

HSP90:

Heat shock protein 90

References

  1. Chae, Y. C., Angelin, A., Lisanti, S., Kossenkov, A. V., Speicher, K. D., Wang, H., Powers, J. F., Tischler, A. S., Pacak, K., Fliedner, S., Michalek, R. D., Karoly, E. D., Wallace, D. C., Languino, L. R., Speicher, D. W., & Altieri, D. C. (2013). Landscape of the mitochondrial Hsp90 metabolome in tumours. Nature Communications, 4(1), 1–9.

    Article  Google Scholar 

  2. Siegelin, M. D., Dohi, T., Raskett, C. M., Orlowski, G. M., Powers, C. M., Gilbert, C. A., Ross, A. H., Plescia, J., & Altieri, D. (2011). Exploiting the mitochondrial unfolded protein response for cancer therapy in mice and human cells. Journal of Clinical Investigation, 121(4), 1349–1360.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dong, L., Gopalan, V., Holland, O., & Neuzil, J. (2020). Mitocans revisited: Mitochondrial targeting as efficient anti-cancer therapy. International Journal of Molecular Sciences, 21(21), 7941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Esner, M., Graifer, D., Lleonart, M. E., & Lyakhovich, A. (2017). Targeting cancer cells through antibiotics-induced mitochondrial dysfunction requires autophagy inhibition. Cancer Letters, 384, 60–69.

    Article  CAS  PubMed  Google Scholar 

  5. Battogtokh, G., Cho, Y.-Y., Lee, J. Y., Lee, H. S., & Kang, H. C. (2018). Mitochondrial-targeting anticancer agent conjugates and nanocarrier systems for cancer treatment. Frontiers in Pharmacology, 9, 1–20.

    Article  Google Scholar 

  6. Gull, N., Arshad, F., Naikoo, G. A., Hassan, I. U., Pedram, M. Z., Ahmad, A., Aljabali, A. A. A., Mishra, V., Satija, S., Charbe, N., Negi, P., Goyal, R., Serrano-Aroca, Á., Al Zoubi, M. S., El-Tanani, M., & Tambuwala, M. M. (2023). Recent advances in anticancer activity of novel plant extracts and compounds from Curcuma Longa in Hepatocellular Carcinoma. Journal of Gastrointestinal Cancer, 54(2), 368–390.

    Article  PubMed  Google Scholar 

  7. Sreedhar, A. S., Kalmár, E., Csermely, P., & Shen, Y. F. (2004). Hsp90 isoforms: Functions, expression and clinical importance. FEBS Letters, 562(1–3), 11–15.

    Article  PubMed  Google Scholar 

  8. Buchner, J., & Li, J. (2013). Structure, function and regulation of the hsp90 machinery. Biomedical journal, 36(3), 106–117.

    Article  PubMed  Google Scholar 

  9. Balanescu, A., Stan, I., Codreanu, I., Comanici, V., Balanescu, E., & Balanescu, P. (2019). Circulating Hsp90 isoform levels in overweight and obese children and the relation to nonalcoholic fatty liver disease: Results from a cross-sectional study. Disease Markers. https://doi.org/10.1155/2019/9560247

    Article  PubMed  PubMed Central  Google Scholar 

  10. Makhnevich, T., & Houry, W. A. (2012). The role of Hsp90 in protein complex assembly. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1823(3), 674–682.

    Article  Google Scholar 

  11. Lund, P. A. (2001). Microbial molecular chaperones. Advances in Microbial Physiology. https://doi.org/10.1016/S0065-2911(01)44012-4

    Article  PubMed  Google Scholar 

  12. Jackson, S. E. (2013). Hsp90: Structure and function. Topics in Current Chemistry, 328, 155–240.

    Article  CAS  PubMed  Google Scholar 

  13. Grenert, J. P., Sullivan, W. P., Fadden, P., Haystead, T. A. J., Clark, J., Mimnaugh, E., Krutzsch, H., Ochel, H.-J., Schulte, T. W., Sausville, E., Neckers, L. M., & Toft, D. O. (1997). The amino-terminal domain of heat shock protein 90 (Hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates Hsp90 conformation. Journal of Biological Chemistry, 272(38), 23843–23850.

    Article  CAS  PubMed  Google Scholar 

  14. Nouri-Vaskeh, M., Alizadeh, L., Hajiasgharzadeh, K., Mokhtarzadeh, A., Halimi, M., & Baradaran, B. (2020). The role of HSP90 molecular chaperones in hepatocellular carcinoma. Journal of Cellular Physiology, 235(12), 9110–9120.

    Article  CAS  PubMed  Google Scholar 

  15. Liu, X., Chen, S., Tu, J., Cai, W., & Xu, Q. (2016). HSP90 inhibits apoptosis and promotes growth by regulating HIF-1α abundance in hepatocellular carcinoma. International Journal of Molecular Medicine, 37(3), 825–835.

    Article  CAS  PubMed  Google Scholar 

  16. Augello, G., Emma, M. R., Cusimano, A., Azzolina, A., Mongiovì, S., Puleio, R., Cassata, G., Gulino, A., Belmonte, B., Gramignoli, R., Strom, S. C., McCubrey, J. A., Montalto, G., & Cervello, M. (2018). Targeting HSP90 with the small molecule inhibitor AUY922 (Luminespib) as a treatment strategy against hepatocellular carcinoma. International Journal of Cancer, 144(10), 2613–2624.

    Article  PubMed  Google Scholar 

  17. Guo, W., Yan, L., Yang, L., Liu, X., Gao, P., Ye, X., Liu, W., & Zuo, J. (2014). Targeting GRP75 improves HSP90 inhibitor efficacy by enhancing P53-mediated apoptosis in hepatocellular carcinoma. PLoS ONE, 9(1), e85766.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xu, Q., Tu, J., Dou, C., Zhang, J., Yang, L., Liu, X., Lei, K., Liu, Z., Wang, Y., Li, L., Bao, H., Wang, J., & Tu, K. (2017). HSP90 promotes cell glycolysis, proliferation and inhibits apoptosis by regulating PKM2 abundance via Thr-328 phosphorylation in hepatocellular carcinoma. Molecular Cancer, 16(1), 1–16.

    Article  Google Scholar 

  19. Cheng, W., Ainiwaer, A., Xiao, L., Cao, Q., Wu, G., Yang, Y., Mao, R., & Bao, Y. (2015). Role of the novel HSP90 inhibitor AUY922 in hepatocellular carcinoma: Potential for therapy. Molecular Medicine Reports, 12(2), 2451–2456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun, Y., Zang, Z., Xu, X., Zhang, Z., Zhong, L., Zan, W., Zhao, Y., & Sun, L. (2010). Differential proteomics identification of HSP90 as potential serum biomarker in hepatocellular carcinoma by two-dimensional electrophoresis and mass spectrometry. International Journal of Molecular Sciences, 11(4), 1423–1433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Leng, A., Liu, T., Yang, J., Cui, J., Li, X., Zhu, Y., Xiong, T., Zhang, G., & Chen, Y. (2012). The apoptotic effect and associated signaling of HSP90 inhibitor 17-DMAG in hepatocellular carcinoma cells. Cell Biology International, 36(10), 893–899.

    Article  CAS  PubMed  Google Scholar 

  22. Wang, X., Wang, S., Liu, Y., Ding, W., Zheng, K., Xiang, Y., Liu, K., Wang, D., Zeng, Y., Xia, M., Yang, D., & Wang, Y. (2014). The Hsp90 inhibitor SNX-2112 induces apoptosis of human hepatocellular carcinoma cells: The role of ER stress. Biochemical and Biophysical Research Communications, 446(1), 160–166.

    Article  CAS  PubMed  Google Scholar 

  23. Chen, W., Li, G., Peng, J., Dai, W., Su, Q., & He, Y. (2019). Transcriptomic analysis reveals that heat shock protein 90α is a potential diagnostic and prognostic biomarker for cancer. European Journal of Cancer Prevention, 29(4), 357–364.

    Article  Google Scholar 

  24. Wei, W., Liu, M., Ning, S., Wei, J., Zhong, J., Li, J., Cai, Z., & Zhang, L. (2020). Diagnostic value of plasma HSP90α levels for detection of hepatocellular carcinoma. BMC Cancer, 20(1), 1–9.

    Article  Google Scholar 

  25. Zhang, J., Li, H., Liu, Y., Zhao, K., Wei, S., Sugarman, E. T., & Zhang, G. (2022). Targeting HSP90 as a novel therapy for cancer: Mechanistic insights and translational relevance. Cells, 11(18), 2778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Birbo, B., Madu, E. E., Madu, C. O., Jain, A., & Lu, Y. (2021). Role of HSP90 in cancer. International journal of molecular sciences, 22(10317), 1–19.

    Google Scholar 

  27. Zhang, J., Li, H., Huang, Z., He, Y., Zhou, X., Huang, T., Dai, P., Duan, D., Ma, X., Yin, Q., Wang, X., Liu, H., Chen, S., Zou, F., & Chen, X. (2016). Hypoxia attenuates Hsp90 inhibitor 17-DMAG-induced cyclin B1 accumulation in hepatocellular carcinoma cells. Cell Stress and Chaperones, 21(2), 339–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pascale, R. M., Simile, M. M., Calvisi, D. F., Frau, M., Muroni, M. R., Seddaiu, M. A., Daino, L., Muntoni, M. D., De Miglio, M. R., Thorgeirsson, S. S., & Feo, F. (2005). Role of HSP90, CDC37, and CRM1 as modulators of P16INK4A activity in rat liver carcinogenesis and human liver cancer. Hepatology, 42(6), 1310–1319.

    Article  CAS  PubMed  Google Scholar 

  29. Nakagawa, S., Umehara, T., Matsuda, C., Kuge, S., Sudoh, M., & Kohara, M. (2007). Hsp90 inhibitors suppress HCV replication in replicon cells and humanized liver mice. Biochemical and Biophysical Research Communications, 353(4), 882–888.

    Article  CAS  PubMed  Google Scholar 

  30. Lang, S. A., Moser, C., Fichnter-Feigl, S., Schachtschneider, P., Hellerbrand, C., Schmitz, V., Schlitt, H. J., Geissler, E. K., & Stoeltzing, O. (2008). Targeting heat-shock protein 90 improves efficacy of rapamycin in a model of hepatocellular carcinoma in mice. Hepatology, 49(2), 523–532.

    Article  Google Scholar 

  31. Wang, L., Zhang, Q., & You, Q. (2021). Targeting the HSP90–CDC37–kinase chaperone cycle: A promising therapeutic strategy for cancer. Medicinal Research Reviews, 42(1), 156–182.

    Article  CAS  PubMed  Google Scholar 

  32. Qin, L., Huang, H., Huang, J., Wang, G., Huang, J., Wu, X., Li, J., Yi, W., Liu, L., & Huang, D. (2019). Biological characteristics of heat shock protein 90 in human liver cancer cells. Am J Transl Res, 11(4), 2477–2483.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou, X., Wen, Y., Tian, Y., He, M., Ke, X., Huang, Z., He, Y., Liu, L., Scharf, A., Lu, M., Zhang, G., Deng, Y., Yan, Y., Mayer, M. P., Chen, X., & Zou, F. (2018). Heat shock protein 90α–dependent B-cell-2–associated transcription factor 1 promotes hepatocellular carcinoma proliferation by regulating MYC proto-oncogene c-MYC MRNA stability. Hepatology, 69(4), 1564–1581.

    Article  PubMed  Google Scholar 

  34. Jiang, Q., & Shen, X. (2020). Research progress of heat shock protein 90 and hepatocellular carcinoma. International Journal of Clinical Medicine, 11(02), 43–52.

    Article  CAS  Google Scholar 

  35. Wang, B., Chen, Z., Yu, F., Chen, Q., Tian, Y., Ma, S., Wang, T., & Liu, X. (2015). Hsp90 regulates autophagy and plays a role in cancer therapy. Tumor Biology, 37(1), 1–6.

    Article  PubMed  Google Scholar 

  36. Chettiar, S. T., Malek, R., Annadanam, A., Nugent, K. M., Kato, Y., Wang, H., Cades, J. A., Taparra, K., Belcaid, Z., Ballew, M., Manmiller, S., Proia, D., Lim, M., Anders, R. A., Herman, J. M., & Tran, P. T. (2016). Ganetespib radiosensitization for liver cancer therapy. Cancer Biology & Therapy, 17(4), 457–466.

    Article  CAS  Google Scholar 

  37. Sun, C., Bai, M., Ke, W., Wang, X., Zhao, X., & Lu, Z. (2021). The HSP90 inhibitor, XL888, enhanced cell apoptosis via downregulating STAT3 after insufficient radiofrequency ablation in hepatocellular carcinoma. Life Sciences, 282, 119762.

    Article  CAS  PubMed  Google Scholar 

  38. Feng, J., Wu, L., Ji, J., Chen, K., Yu, Q., Zhang, J., Chen, J., Mao, Y., Wang, F., Dai, W., Xu, L., Wu, J., & Guo, C. (2019). PKM2 Is the target of proanthocyanidin B2 during the inhibition of hepatocellular carcinoma. Journal of Experimental & Clinical Cancer Research, 38(1), 1–15.

    Article  Google Scholar 

  39. Kim, Y. S., Seo, H. W., & Jung, G. (2015). Reactive oxygen species promote heat shock protein 90-mediated HBV capsid assembly. Biochemical and Biophysical Research Communications, 457(3), 328–333.

    Article  CAS  PubMed  Google Scholar 

  40. Goyal, L., Wadlow, R. C., Blaszkowsky, L. S., Wolpin, B. M., Vasudev, E., Sheehan, S., Knowles, M., & Zhu, A. X. (2013). A phase I study of ganetespib in advanced hepatocellular carcinoma (HCC). Journal of Clinical Oncology, 31(4), 259–259.

    Article  Google Scholar 

  41. Huang, Z., Zhou, X., He, Y., Ke, X., Wen, Y., Zou, F., & Chen, X. (2016). Hyperthermia enhances 17-DMAG efficacy in hepatocellular carcinoma cells with aggravated DNA damage and impaired G2/M transition. Scientific Reports, 6(1), 1–11.

    Google Scholar 

  42. Park, S., Park, J.-A., Kim, Y.-E., Song, S., Kwon, H. J., & Lee, Y. (2014). Suberoylanilide hydroxamic acid induces ROS-mediated cleavage of HSP90 in leukemia cells. Cell Stress and Chaperones, 20(1), 149–157.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wong, D. S., & Jay, D. G. (2016). Emerging roles of extracellular Hsp90 in cancer. Advances in Cancer Research. https://doi.org/10.1016/bs.acr.2016.01.001

    Article  PubMed  Google Scholar 

  44. Su, C. (2016). Survivin in survival of hepatocellular carcinoma. Cancer Letters, 379(2), 184–190.

    Article  CAS  PubMed  Google Scholar 

  45. Li, S., Li, H., Yin, D., Xue, X., Chen, X., Li, X., Li, J., & Yi, Y. (2022). Effect of gigantol on the proliferation of hepatocellular carcinoma cells tested by a network-based pharmacological approach and experiments. Frontiers in Bioscience-Landmark, 27(1), 1–16.

    Google Scholar 

  46. Mrozek, E. M., Bajaj, V., Guo, Y., Malinowska, I. A., Zhang, J., & Kwiatkowski, D. J. (2021). Evaluation of Hsp90 and MTOR inhibitors as potential drugs for the treatment of TSC1/TSC2 deficient cancer. PLoS ONE, 16(4), e0248380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jiang, Y., Yao, B., Chen, T., Mo, H., Chen, S., Liu, Q., & Sun, Y. (2020). BICD1 functions as a prognostic biomarker and promotes hepatocellular carcinoma progression. Pathology - Research and Practice, 216(4), 152858.

    Article  CAS  PubMed  Google Scholar 

  48. Dong, L.-F., Jameson, V. J. A., Tilly, D., Cerny, J., Mahdavian, E., Marín-Hernández, A., Hernández-Esquivel, L., Rodríguez-Enríquez, S., Stursa, J., Witting, P. K., Stantic, B., Rohlena, J., Truksa, J., Kluckova, K., Dyason, J. C., Ledvina, M., Salvatore, B. A., Moreno-Sánchez, R., Coster, M. J., & Ralph, S. J. (2011). Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. Journal of Biological Chemistry, 286(5), 3717–3728.

    Article  CAS  PubMed  Google Scholar 

  49. Prodromou, C. (2017). Regulatory mechanisms of Hsp90. Biochemistry & Molecular Biology Journal, 03(01), 2439–2452.

    Article  Google Scholar 

  50. Trepel, J., Mollapour, M., Giaccone, G., & Neckers, L. (2010). targeting the dynamic HSP90 complex in cancer. Nature Reviews Cancer, 10(8), 537–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Masgras, I., Laquatra, C., Cannino, G., Serapian, S. A., Colombo, G., & Rasola, A. (2021). The molecular chaperone TRAP1 in cancer: From the basics of biology to pharmacological targeting. Seminars in Cancer Biology, 76, 45–53.

    Article  CAS  PubMed  Google Scholar 

  52. Felts, S. J., Owen, B. A. L., Nguyen, P., Trepel, J., Donner, D. B., & Toft, D. O. (2000). The Hsp90-Related Protein TRAP1 Is a Mitochondrial Protein with Distinct Functional Properties. Journal of Biological Chemistry, 275(5), 3305–3312.

    Article  CAS  PubMed  Google Scholar 

  53. Wang, Y., Koay, Y. C., & McAlpine, S. R. (2017). Redefining the phenotype of heat shock protein 90 (Hsp90) inhibitors. Chemistry - A European Journal, 23(9), 2010–2013.

    Article  CAS  PubMed  Google Scholar 

  54. Chatterjee, S., & Burns, T. F. (2017). Targeting heat shock proteins in cancer: A promising therapeutic approach. International journal of molecular sciences, 18(9), 1978.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wengert, L. A., Backe, S. J., Bourboulia, D., Mollapour, M., & Woodford, M. R. (2022). TRAP1 chaperones the metabolic switch in cancer. Biomolecules, 12(6), 1–19.

    Article  Google Scholar 

  56. Rasola, A., Neckers, L., & Picard, D. (2014). Mitochondrial oxidative phosphorylation TRAP (1) ped in tumor cells. Trends in Cell Biology, 24(8), 455–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Masgras, I., Sanchez-Martin, C., Colombo, G., & Rasola, A. (2017). The Chaperone TRAP1 as a Modulator of the Mitochondrial Adaptations in Cancer Cells. Frontiers in Oncology, 7, 1–10.

    Article  Google Scholar 

  58. Yoshida, S., Tsutsumi, S., Muhlebach, G., Sourbier, C., Lee, M.-J., Lee, S., Vartholomaiou, E., Tatokoro, M., Beebe, K., Miyajima, N., Mohney, R. P., Chen, Y., Hasumi, H., Xu, W., Fukushima, H., Nakamura, K., Koga, F., Kihara, K., Trepel, J., & Picard, D. (2013). Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis. Proceedings of the National Academy of Sciences, 110(17), 1–9.

    Article  Google Scholar 

  59. Sciacovelli, M., Guzzo, G., Morello, V., Frezza, C., Zheng, L., Nannini, N., Calabrese, F., Laudiero, G., Esposito, F., Landriscina, M., Defilippi, P., Bernardi, P., & Rasola, A. (2013). The mitochondrial chaperone TRAP1 promotes neoplastic growth by inhibiting succinate dehydrogenase. Cell Metabolism, 17(6), 988–999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Agorreta, J., Hu, J., Liu, D., Delia, D., Turley, H., Ferguson, D. J. P., Iborra, F., Pajares, M. J., Larrayoz, M., Zudaire, I., Pio, R., Montuenga, L. M., Harris, A. L., Gatter, K., & Pezzella, F. (2014). TRAP1 regulates proliferation, mitochondrial function, and has prognostic significance in NSCLC. Molecular Cancer Research, 12(5), 660–669.

    Article  CAS  PubMed  Google Scholar 

  61. Gao, L., Wang, X., Niu, Y., Duan, D., Yang, X., Hao, J., Zhu, C., Chen, D., Wang, K., Qin, X., & Wu, X. (2016). Molecular targets of Chinese herbs: A clinical study of hepatoma based on network pharmacology. Scientific Reports, 6(1), 1–11.

    Google Scholar 

  62. Kang, B.-H. (2012). TRAP1 regulation of mitochondrial life or death decision in cancer cells and mitochondria-targeted TRAP1 inhibitors. BMB Reports, 45(1), 1–6.

    Article  CAS  PubMed  Google Scholar 

  63. Marchetti, P., Guerreschi, P., Mortier, L., & Kluza, J. (2015). Integration of mitochondrial targeting for molecular cancer therapeutics. International Journal of Cell Biology. https://doi.org/10.1155/2015/283145

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ozsvari, B., Sotgia, F., & Lisanti, M. P. (2018). Exploiting mitochondrial targeting signal(S), TPP and Bis-TPP, for eradicating cancer stem cells (CSCs). Aging, 10(2), 229–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dabravolski, S. A., Nikiforov, N. G., Zhuravlev, A. D., Orekhov, N. A., Mikhaleva, L. M., & Orekhov, A. N. (2021). The role of altered mitochondrial metabolism in thyroid cancer development and mitochondria-targeted thyroid cancer treatment. International Journal of Molecular Sciences, 23(1), 1–16.

    Article  Google Scholar 

  66. Dong, L., & Neuzil, J. (2019). Targeting mitochondria as an anticancer strategy. Cancer Communications, 39(1), 1–3.

    Article  Google Scholar 

  67. Ralph, S., Low, P., Dong, L., Lawen, A., & Neuzil, J. (2006). Mitocans: Mitochondrial targeted anti-cancer drugs as improved therapies and related patent documents. Recent Patents on Anti-Cancer Drug Discovery, 1(3), 327–346.

    Article  CAS  PubMed  Google Scholar 

  68. Baccelli, I., Gareau, Y., Lehnertz, B., Stephane, G., Spinella, J.-F., Beautrait, A., Corneau, S., Mayotte, N., Boivin, I., Girard, S., MacRae, T., Frechette, M., Leveille, K., Krosl, J., Thiollier, C., Kanshin, E., Bertomeu, T., Coulombe-Huntington, J., St-Denis, C., & Bordeleau, M.-E. (2018). Mubritinib targets the electron transport chain complex I and reveals the landscape of mitochondrial vulnerability in acute myeloid leukemia. Blood, 132(1), 910–910.

    Article  Google Scholar 

  69. Sotgia, F., Ozsvari, B., Fiorillo, M., De Francesco, E. M., Bonuccelli, G., & Lisanti, M. P. (2018). A Mitochondrial based oncology platform for targeting cancer stem cells (CSCs): MITO-ONC-RX. Cell Cycle, 17(17), 2091–2100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ren, T., Zhang, H., Wang, J., Zhu, J., Jin, M., Wu, Y., Guo, X., Ji, L., Huang, Q., Zhang, H., Yang, H., & Xing, J. (2017). MCU-dependent mitochondrial Ca2+ inhibits NAD+/SIRT3/SOD2 pathway to promote ROS production and metastasis of HCC cells. Oncogene, 36(42), 5897–5909.

    Article  CAS  PubMed  Google Scholar 

  71. Farsinejad, S., Gheisary, Z., Ebrahimi Samani, S., & Alizadeh, A. M. (2015). Mitochondrial targeted peptides for cancer therapy. Tumor Biology, 36(8), 5715–5725.

    Article  CAS  PubMed  Google Scholar 

  72. Dilip, A., Cheng, G., Joseph, J., Kunnimalaiyaan, S., Kalyanaraman, B., Kunnimalaiyaan, M., & Gamblin, T. C. (2013). Mitochondria-targeted antioxidant and glycolysis inhibition. Anti-Cancer Drugs, 24(9), 881–888.

    Article  CAS  PubMed  Google Scholar 

  73. Vasan, K., Werner, M., & Chandel, N. S. (2020). Mitochondrial metabolism as a target for cancer therapy. Cell Metabolism, 32(3), 341–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhou, J., Zhao, W.-Y., Ma, X., Ju, R.-J., Li, X.-Y., Li, N., Sun, M.-G., Shi, J.-F., Zhang, C.-X., & Lu, W.-L. (2013). The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials, 34(14), 3626–3638.

    Article  CAS  PubMed  Google Scholar 

  75. Trotta, A. P., Gelles, J. D., Serasinghe, M. N., Loi, P., Arbiser, J. L., & Chipuk, J. E. (2017). Disruption of mitochondrial electron transport chain function potentiates the pro-apoptotic effects of MAPK inhibition. The Journal of Biological Chemistry, 292(28), 11727–11739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jeena, M. T., Kim, S., Jin, S., & Ryu, J.-H. (2019). Recent progress in mitochondria-targeted drug and drug-free agents for cancer therapy. Cancers, 12(1), 1–20.

    Article  Google Scholar 

  77. Léveillé, M., & Estall, J. L. (2019). Mitochondrial dysfunction in the transition from NASH to HCC. Metabolites, 9(10), 1–28.

    Article  Google Scholar 

  78. Kang, B. H., Plescia, J., Song, H. Y., Meli, M., Colombo, G., Beebe, K., Scroggins, B., Neckers, L., & Altieri, D. C. (2009). Combinatorial drug design targeting multiple cancer signaling networks controlled by mitochondrial Hsp90. Journal of Clinical Investigation, 119(3), 454–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li, Q., & Huang, Y. (2020). Mitochondrial targeted strategies and their. Application for cancer and other diseases treatment. Journal of Pharmaceutical Investigation, 50(3), 271–293.

    Article  Google Scholar 

  80. Fulda, S., Galluzzi, L., & Kroemer, G. (2010). Targeting mitochondria for cancer therapy. Nature Reviews Drug Discovery, 9(6), 447–464.

    Article  CAS  PubMed  Google Scholar 

  81. Noh, I., Lee, D., Kim, H., Jeong, C., Lee, Y., Ahn, J., Hyun, H., Park, J., & Kim, Y. (2017). Enhanced photodynamic cancer treatment by mitochondria-targeting and brominated near-infrared fluorophores. Advanced Science, 5(3), 1700481.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wen, S., Zhu, D., & Huang, P. (2013). Targeting cancer cell mitochondria as a therapeutic approach. Future Medicinal Chemistry, 5(1), 53–67.

    Article  CAS  PubMed  Google Scholar 

  83. Armstrong, J. S. (2006). Mitochondria: A target for cancer therapy. British Journal of Pharmacology, 147(3), 239–248.

    Article  CAS  PubMed  Google Scholar 

  84. Chen, Z.-P., Li, M., Zhang, L.-J., He, J.-Y., Wu, L., Xiao, Y.-Y., Duan, J.-A., Cai, T., & Li, W.-D. (2015). Mitochondria-targeted drug delivery system for cancer treatment. Journal of Drug Targeting, 24(6), 492–502.

    Article  PubMed  Google Scholar 

  85. Frattaruolo, L., Brindisi, M., Curcio, R., Marra, F., Dolce, V., & Cappello, A. R. (2020). Targeting the mitochondrial metabolic network: A promising strategy in cancer treatment. International Journal of Molecular Sciences, 21(17), 6014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nixon, G. L., Pidathala, C., Shone, A. E., Antoine, T., Fisher, N., O’Neill, P. M., Ward, S. A., & Biagini, G. A. (2013). Targeting the mitochondrial electron transport Chain of Plasmodium falciparum: New strategies towards the development of improved Antimalarials for the Elimination Era. Future Medicinal Chemistry, 5(13), 1573–1591.

    Article  CAS  PubMed  Google Scholar 

  87. Cochrane, E. J., Hulit, J., Lagasse, F. P., Lechertier, T., Stevenson, B., Tudor, C., Trebicka, D., Sparey, T., & Ratcliffe, A. J. (2021). Impact of mitochondrial targeting antibiotics on mitochondrial function and proliferation of cancer cells. ACS Medicinal Chemistry Letters, 12(4), 579–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fang, L., Fan, H., Guo, C., Cui, L., Zhang, P., Mu, H., Xu, H., Zhao, F., & Chen, D. (2019). Novel mitochondrial targeting multifunctional surface charge-reversal polymeric nanoparticles for cancer treatment. Journal of Biomedical Nanotechnology, 15(11), 2151–2163.

    Article  PubMed  Google Scholar 

  89. Li, W., Zhang, Q., Chen, K., Sima, Z., Liu, J., Yu, Q., & Liu, J. (2019). 2-Ethoxystypandrone, a novel small-molecule STAT3 signaling inhibitor from Polygonum cuspidatum inhibits cell growth and induces apoptosis of HCC cells and HCC cancer stem cells. BMC Complementary and Alternative Medicine, 19(1), 1–13.

    Article  Google Scholar 

  90. Hu, B., An, H.-M., Shen, K.-P., Song, H.-Y., & Deng, S. (2012). Polygonum Cuspidatum extract induces Anoikis in Hepatocarcinoma cells associated with generation of reactive oxygen species and downregulation of focal adhesion kinase. Evidence-Based Complementary and Alternative Medicine. https://doi.org/10.1155/2012/607675

    Article  PubMed  PubMed Central  Google Scholar 

  91. Xie, Q., Yang, Y., Wang, Z., Chen, F., Zhang, A., & Liu, C. (2014). Resveratrol-4-O-D-(2’-Galloyl)-Glucopyranoside Isolated from Polygonum Cuspidatum exhibits anti-hepatocellular carcinoma viability by inducing apoptosis via the JNK and ERK pathway. Molecules, 19(2), 1592–1602.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wang, Y.-D., Sun, X.-J., Yang, W.-J., Li, J., & Yin, J.-J. (2018). Magnolol exerts anticancer activity in hepatocellular carcinoma cells through regulating endoplasmic reticulum stress-mediated apoptotic signaling. OncoTargets and Therapy, 11, 5219–5226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tsai, J., Chen, J., Chen, C. H., Chung, J., & Hsu, F. (2019). Apoptosis induction and ERK/NF-ΚB inactivation are associated with magnolol-inhibited tumor progression in hepatocellular carcinoma in vivo. Environmental Toxicology, 35(2), 167–175.

    Article  PubMed  Google Scholar 

  94. Chen, C.-Y., Fang, J.-Y., Chen, C.-C., Chuang, W.-Y., Leu, Y.-L., Ueng, S.-H., Wei, L.-S., Cheng, S.-F., Hsueh, C., & Wang, T.-H. (2020). 2-O-methylmagnolol, a Magnolol derivative, suppresses hepatocellular carcinoma progression via inhibiting class I histone deacetylase expression. Frontiers in Oncology, 10, 1–13.

    Google Scholar 

  95. Feng, F., Pan, L., Wu, J., Li, L., Xu, H., Yang, L., Xu, K., & Wang, C. (2021). Cepharanthine inhibits hepatocellular carcinoma cell growth and proliferation by regulating amino acid metabolism and suppresses tumorigenesis in Vivo. International Journal of Biological Sciences, 17(15), 4340–4352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rogosnitzky, M., & Danks, R. (2011). Therapeutic potential of the biscoclaurine alkaloid, cepharanthine, for a range of clinical conditions. Pharmacological Reports, 63(2), 337–347.

    Article  CAS  PubMed  Google Scholar 

  97. Biswas, K. K., Tancharon, S., Sarker, K. P., Kawahara, K., Hashiguchi, T., & Maruyama, I. (2005). Cepharanthine triggers apoptosis in a human hepatocellular carcinoma cell line (HuH-7) through the activation of JNK1/2 and the downregulation of Akt. FEBS Letters, 580(2), 703–710.

    Article  PubMed  Google Scholar 

  98. Li, Y., Jiang, M., Li, M., Chen, Y., Wei, C., Peng, L., Liu, X., Liu, Z., Tong, G., Zhou, D., & He, J. (2019). Compound Phyllanthus urinaria L. inhibits HBV-related HCC through HBx-SHH pathway axis inactivation. Evidence-Based Complementary and Alternative Medicine. https://doi.org/10.1155/2019/1635837

    Article  PubMed  PubMed Central  Google Scholar 

  99. Huang, D., Yang, B., Yao, Y., Liao, M., Zhang, Y., Zeng, Y., Zhang, F., Wang, N., & Tong, G. (2021). Autophagic inhibition of caveolin-1 by compound Phyllanthus urinaria L. activates ubiquitination and proteasome degradation of β-catenin to suppress metastasis of hepatitis b-associated hepatocellular carcinoma. Frontiers in Pharmacology, 12, 1–20.

    CAS  Google Scholar 

  100. Hsu, W.-H., Liao, S.-C., Chyan, Y.-J., Huang, K.-W., Hsu, S.-L., Chen, Y.-C., Siu, M.-L., Chang, C.-C., Chung, Y.-S., & Huang, C.-Y.F. (2019). Graptopetalum paraguayense inhibits liver fibrosis by blocking TGF-β signaling in vivo and in vitro. International Journal of Molecular Sciences, 20(10), 2592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rawat, D., Shrivastava, S., Naik, R. A., Chhonker, S. K., Mehrotra, A., & Koiri, R. K. (2019). An overview of natural plant products in the treatment of hepatocellular carcinoma. Anti-Cancer Agents in Medicinal Chemistry, 18(13), 1838–1859.

    Article  Google Scholar 

  102. Hsu, W.-H., Chang, C.-C., Huang, K.-W., Chen, Y.-C., Hsu, S.-L., Wu, L.-C., Tsou, A.-P., Lai, J.-M., & Huang, C.-Y.F. (2015). Evaluation of the medicinal Herb Graptopetalum paraguayense as a treatment for liver cancer. PLoS ONE, 10(4), e0121298.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sreejith, P. S., & Asha, V. V. (2015). Glycopentalone, a novel compound from Glycosmis Pentaphylla (Retz.) Correa with potent anti-hepatocellular carcinoma activity. Journal of Ethnopharmacology, 172, 38–43.

    Article  CAS  PubMed  Google Scholar 

  104. Hu, Y., Wang, S., Wu, X., Zhang, J., Chen, R., Chen, M., & Wang, Y. (2013). Chinese herbal medicine-derived compounds for cancer therapy: A focus on hepatocellular carcinoma. Journal of Ethnopharmacology, 149(3), 601–612.

    Article  CAS  PubMed  Google Scholar 

  105. Baek, S. Y., Hwang, U. W., Suk, H. Y., & Kim, Y. W. (2020). Hemistepsin a inhibits cell proliferation and induces G0/G1-phase arrest, cellular senescence and apoptosis via the AMPK and P53/P21 signals in human hepatocellular carcinoma. Biomolecules, 10(5), 1–14.

    Article  Google Scholar 

  106. Lee, D., Yu, J. S., Ha, J. W., Lee, S. R., Lee, B. S., Kim, J.-C., Kim, J. K., Kang, K. S., & Kim, K. H. (2022). Antitumor potential of withanolide glycosides from Ashwagandha (Withania Somnifera) on apoptosis of human hepatocellular carcinoma cells and tube formation in human umbilical vein endothelial cells. Antioxidants, 11(9), 1–15.

    Article  Google Scholar 

  107. Shiragannavar, V. D., Gowda, N. G. S., Kumar, D. P., Mirshahi, F., & Santhekadur, P. K. (2021). Withaferin a acts as a novel regulator of liver X receptor-α in HCC. Frontiers in Oncology, 10, 1–8.

    Article  Google Scholar 

  108. Wadhwa, R., Singh, R., Gao, R., Shah, N., Widodo, N., Nakamoto, T., Ishida, Y., Terao, K., & Kaul, S. C. (2013). Water extract of Ashwagandha leaves has anticancer activity: Identification of an active component and its mechanism of action. PLoS ONE, 8(10), e77189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ahmed, W., Mofed, D., Zekri, A.-R., El-Sayed, N., Rahouma, M., & Sabet, S. (2018). Antioxidant activity and apoptotic induction as mechanisms of action of Withania somnifera (Ashwagandha) against a hepatocellular carcinoma cell line. Journal of International Medical Research, 46(4), 1358–1369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Liou, A. T., Chen, M. F., & Yang, C. W. (2017). Curcumin induces p53-null hepatoma cell line Hep3B apoptosis through the AKT-PTEN-FOXO4 pathway. Evidence-Based Complementary and Alternative Medicine. https://doi.org/10.1155/2017/4063865

    Article  PubMed  PubMed Central  Google Scholar 

  111. Jiang, M., Yang-Yen, H. F., Lin, J. K., & Yen, J. (1996). Differential regulation of p53, c-Myc, Bcl-2 and Bax protein expression during apoptosis induced by widely divergent stimuli in human hepatoblastoma cells. Oncogene, 13(3), 609–616.

    CAS  PubMed  Google Scholar 

  112. Zhang, W., Chen, L., Ma, K., Zhao, Y., Liu, X., Wang, Y., Liu, M., Liang, S., Zhu, H., & Xu, N. (2016). Polarization of Macrophages in the Tumor Microenvironment Is Influenced by EGFR Signaling within Colon Cancer Cells. Oncotarget, 7(46), 75366–75378.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Philips, C. A., Augustine, P., Rajesh, S., & Y, P. K., & Madhu, D,. (2019). Complementary and Alternative Medicine-Related Drug-Induced Liver Injury in Asia. Journal of Clinical and Translational Hepatology, 7(3), 263–274.

    PubMed  PubMed Central  Google Scholar 

  114. Cui, W., Gu, F., & Hu, K.-Q. (2009). Effects and Mechanisms of Silibinin on Human Hepatocellular Carcinoma Xenografts in Nude Mice. World Journal of Gastroenterology, 15(16), 1943–1950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Momeny, M., Khorramizadeh, M. R., Ghaffari, S. H., Yousefi, M., Yekaninejad, M. S., Esmaeili, R., Jahanshiri, Z., & Nooridaloii, M. R. (2008). Effects of silibinin on cell growth and invasive properties of a human hepatocellular carcinoma cell line, HepG-2, through inhibition of extracellular signal-regulated kinase 1/2 phosphorylation. European Journal of Pharmacology, 591(1–3), 13–20.

    Article  CAS  PubMed  Google Scholar 

  116. Wang, N., Feng, Y., Zhu, M., Tsang, C.-M., Man, K., Tong, Y., & Tsao, S.-W. (2010). Berberine induces autophagic cell death and mitochondrial apoptosis in liver cancer cells: The cellular mechanism. Journal of Cellular Biochemistry, 111(6), 1426–1436.

    Article  CAS  PubMed  Google Scholar 

  117. Hwang, J. M., Kuo, H.-C., Tseng, T.-H., Liu, J.-Y., & Chu, C.-Y. (2005). Berberine induces apoptosis through a mitochondria/caspases pathway in human hepatoma cells. Archives of Toxicology, 80(2), 62–73.

    Article  PubMed  Google Scholar 

  118. Tanigawa, S., Fujii, M., & Hou, D.-X. (2008). Stabilization of P53 is involved in quercetin-induced cell cycle arrest and apoptosis in HepG2 cells. Bioscience, Biotechnology, and Biochemistry, 72(3), 797–804.

    Article  CAS  PubMed  Google Scholar 

  119. Yuxian, X., Feng, T., Ren, L., & Zhengcai, L. (2009). Tanshinone II-A inhibits invasion and metastasis of human hepatocellular carcinoma cells in Vitro and in Vivo. Tumori Journal, 95(6), 789–795.

    Article  PubMed  Google Scholar 

  120. Lee, W. Y. W., Cheung, C. C. M., Liu, K. W. K., Fung, K. P., Wong, J., Lai, P. B. S., & Yeung, J. H. K. (2010). Cytotoxic effects of tanshinones from Salvia Miltiorrhiza on doxorubicin-resistant human liver cancer cells. Journal of Natural Products, 73(5), 854–859.

    Article  CAS  PubMed  Google Scholar 

  121. Shanmugam, M. K., Nguyen, A., Alan Prem Kumar, B., & Sethi, G. (2012). Targeted inhibition of tumor proliferation, survival, and metastasis by pentacyclic triterpenoids: Potential role in prevention and therapy of cancer. Cancer Letters, 320(2), 158–170.

    Article  CAS  PubMed  Google Scholar 

  122. Kannaiyan, R., Manu, K. A., Chen, L., Li, F., Rajendran, P., Subramaniam, A., Lam, P., Kumar, A. P., & Sethi, G. (2011). Celastrol inhibits tumor cell proliferation and promotes apoptosis through the activation of C-Jun N-terminal kinase and suppression of PI3 K/Akt signaling pathways. Apoptosis, 16(10), 1028–1041.

    Article  CAS  PubMed  Google Scholar 

  123. Wang, S., Liu, K., Wang, X., He, Q., & Chen, X. (2010). Toxic effects of celastrol on embryonic development of zebrafish (Danio Rerio). Drug and Chemical Toxicology, 34(1), 61–65.

    Article  CAS  PubMed  Google Scholar 

  124. El-senosi, Y., Aziza, S., Elsonbaty, S., & Abo Alella, M. S. (2021). Role of Asparagus Racemosus root in the amelioration of hepatocellular carcinoma in rat. Benha Veterinary Medical Journal, 40(2), 111–116.

    Article  Google Scholar 

  125. Bhutani, K. K., Paul, A. T., Fayad, W., & Linder, S. (2010). Apoptosis inducing activity of steroidal constituents from Solanum xanthocarpum and Asparagus racemosus. Phytomedicine, 17(10), 789–793.

    Article  CAS  PubMed  Google Scholar 

  126. Alok, S., Jain, S. K., Verma, A., Kumar, M., Mahor, A., & Sabharwal, M. (2013). Plant profile, phytochemistry and pharmacology of Asparagus Racemosus (Shatavari): A review. Asian Pacific Journal of Tropical Disease, 3(3), 242–251.

    Article  CAS  PubMed Central  Google Scholar 

  127. Nath, L. R., Gorantla, J. N., Thulasidasan, A. K. T., Vijayakurup, V., Shah, S., Anwer, S., Joseph, S. M., Antony, J., Veena, K. S., Sundaram, S., Marelli, U. K., Lankalapalli, R. S., & Anto, R. J. (2016). Evaluation of Uttroside B, a Saponin from Solanum nigrum Linn, as a promising chemotherapeutic agent against hepatocellular carcinoma. Scientific Reports, 6(1), 1–13.

    Article  Google Scholar 

  128. Yang, M.-Y., Hsu, L.-S., Peng, C.-H., Shi, Y.-S., Wu, C.-H., & Wang, C.-J. (2010). Polyphenol-rich extracts from Solanum nigrum attenuated PKC α-mediated migration and invasion of hepatocellular carcinoma cells. Journal of Agricultural and Food Chemistry, 58(9), 5806–5814.

    Article  CAS  PubMed  Google Scholar 

  129. Campani, C., Zucman-Rossi, J., & Nault, J. C. (2023). Genetics of hepatocellular carcinoma: From tumor to circulating DNA. Cancers, 15(3), 817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gao, L., Wang, X. D., Niu, Y. Y., Duan, D. D., Yang, X., Hao, J., Zhu, C. H., Chen, D., Wang, K. X., Qin, X. M., & Wu, X. Z. (2016). Molecular targets of Chinese herbs: A clinical study of hepatoma based on network pharmacology. Scientific reports, 6(1), 24944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gong, B., Kao, Y., Zhang, C., Sun, F., & Zhao, H. (2018). Systematic investigation of Scutellariae barbatae Herba for Treating hepatocellular carcinoma based on network pharmacology. Evidence-Based Complementary and Alternative Medicine. https://doi.org/10.1155/2018/4365739

    Article  PubMed  PubMed Central  Google Scholar 

  132. Guo, W., Huang, J., Wang, N., Tan, H.-Y., Cheung, F., Chen, F., & Feng, Y. (2019). Integrating network pharmacology and pharmacological evaluation for deciphering the action mechanism of herbal formula Zuojin pill in suppressing hepatocellular carcinoma. Frontiers in Pharmacology, 10, 1–21.

    Article  Google Scholar 

  133. Huang, J., Chen, F., Zhong, Z., Tan, H. Y., Wang, N., Liu, Y., Fang, X., Yang, T., & Feng, Y. (2020). Interpreting the pharmacological mechanisms of Huachansu capsules on hepatocellular carcinoma through combining network pharmacology and experimental evaluation. Frontiers in Pharmacology, 11, 1–14.

    PubMed  PubMed Central  Google Scholar 

  134. Jiang, N., Li, H., Sun, Y., Zeng, J., Yang, F., Kantawong, F., & Wu, J. (2021). Network pharmacology and pharmacological evaluation reveals the mechanism of the Sanguisorba officinalis in suppressing hepatocellular carcinoma. Frontiers in Pharmacology, 12, 1–18.

    Google Scholar 

  135. Luo, Y., Feng, Y., Song, L., He, G.-Q., Li, S., Bai, S.-S., Huang, Y.-J., Li, S.-Y., Almutairi, M. M., Shi, H.-L., Wang, Q., & Hong, M. (2019). A network pharmacology-based study on the anti-hepatoma effect of radix Salviae miltiorrhizae. Chinese Medicine, 14(1), 1–17.

    Article  Google Scholar 

  136. Hu, A., Wei, Z., Zheng, Z., Luo, B., Yi, J., Zhou, X., & Zeng, C. (2021). A computational framework to identify transcriptional and network differences between hepatocellular carcinoma and normal liver tissue and their applications in repositioning drugs. BioMed Research International. https://doi.org/10.1155/2021/9921195

    Article  PubMed  PubMed Central  Google Scholar 

  137. Ibrahim, S. J. A., & Thangamani, M. (2018). Prediction of novel drugs and diseases for hepatocellular carcinoma based on multi-source simulated annealing based random walk. Journal of Medical Systems, 42(188), 1–12.

    Google Scholar 

  138. Qian, F., Wang, J., Wang, Y., Gao, Q., Yan, W., Lin, Y., Shen, L., Xie, Y., Jiang, X., & Shen, B. (2021). MiR-378a-3p as a putative biomarker for hepatocellular carcinoma diagnosis and prognosis: Computational screening with experimental validation. Clinical and Translational Medicine, 11(2), 1–27.

    Article  Google Scholar 

  139. Jiang, C. H., Yuan, X., Li, J. F., Xie, Y. F., Zhang, A. Z., Wang, X. L., Yang, L., Liu, C. X., Liang, W. H., Pang, L. J., Zou, H., Cui, X. B., Shen, X. H., Qi, Y., Jiang, J. F., Gu, W. Y., Li, F., & Hu, J. M. (2020). Bioinformatics-based screening of key genes for transformation of liver cirrhosis to hepatocellular carcinoma. Journal of Translational Medicine, 18(1), 1–11.

    Article  Google Scholar 

  140. Wei, Y., Lin, Y., Chen, W., Liu, S., Jin, L., & Huang, D. (2021). computational and in vitro analysis of Plumbagin’s molecular mechanism for the treatment of hepatocellular carcinoma. Frontiers in Pharmacology, 12, 1–17.

    CAS  Google Scholar 

  141. Abdul, N. S., Nagiah, S., Anand, K., & Chuturgoon, A. A. (2020). Molecular docking and mechanisms of fusaric acid induced mitochondrial sirtuin aberrations in glycolytically and oxidatively poised human hepatocellular carcinoma (HepG2) cells. Toxicon, 173, 48–56.

    Article  CAS  PubMed  Google Scholar 

  142. Ameri, M., Salimi, H., Eskandari, S., & Nezafat, N. (2022). Identification of Potential Biomarkers in Hepatocellular Carcinoma: A Network-Based Approach. Informatics in Medicine Unlocked, 28, 100864.

    Article  Google Scholar 

  143. Sarathi, A., & Palaniappan, A. (2019). Novel significant stage-specific differentially expressed genes in hepatocellular carcinoma. BMC Cancer, 19(1), 1–22.

    Article  CAS  Google Scholar 

  144. Abbasi, M., Amanlou, M., Aghaei, M., Bakherad, M., Doosti, R., & Sadeghi-Aliabadi, H. (2019). New heat shock protein (Hsp90) inhibitors, designed by pharmacophore modeling and virtual screening: Synthesis, biological evaluation and molecular dynamics studies. Journal of Biomolecular Structure and Dynamics, 38(12), 3462–3473.

    Article  PubMed  Google Scholar 

  145. Arba, M., Kartasasmita, R. E., & H. Tjahjono, D (2015). Molecular Docking and Molecular Dynamics Simulation of the Interaction of Cationic Imidazolium Porphyrin-Anthraquinone and Hsp90. Proceedings of the 3rd International Conference on Computation for Science and Technology.

  146. Cortassa, S., Sollott, S. J., & Aon, M. A. (2018). Computational modeling of mitochondrial function from a systems biology perspective. Mitochondrial Bioenergetics, 810, 249–265.

    Article  Google Scholar 

  147. Rezvani, S., Ebadi, A., & Razzaghi-Asl, N. (2021). In silico identification of potential Hsp90 inhibitors via ensemble docking, DFT and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 40(21), 10665–10676.

    Article  PubMed  Google Scholar 

  148. Roughley, S., Wright, L., Brough, P., Massey, A., & Hubbard, R. E. (2011). Hsp90 inhibitors and drugs from fragment and virtual screening. Topics in Current Chemistry. https://doi.org/10.1007/128_2011_181

    Article  Google Scholar 

  149. Zhang, Y., Xie, Y., Huang, X., Zhang, L., & Shu, K. (2022). Screening of Hub genes in hepatocellular carcinoma based on network analysis and machine learning. Computational and Mathematical Methods in Medicine. https://doi.org/10.1155/2022/7300788

    Article  PubMed  PubMed Central  Google Scholar 

  150. Krishnamoorthy, P. K. P., Kamal, M. A., Warsi, M. K., Alnajeebi, A. M., Ali, H. A., Helmi, N., Izhari, M. A., Mustafa, S., Firoz, A., & Mobashir, M. (2020). In-silico study reveals immunological signaling pathways, their genes, and potential herbal drug targets in ovarian cancer. Informatics in Medicine Unlocked, 20, 100422.

    Article  Google Scholar 

  151. Khouja, H. I., Ashankyty, I. M., Bajrai, L. H., Kumar, P. K. P., Kamal, M. A., Firoz, A., & Mobashir, M. (2022). Multi-staged gene expression profiling reveals potential genes and the critical pathways in kidney cancer. Scientific Reports, 12(1), 1–10.

    Article  Google Scholar 

  152. Xu, Y., Zou, Y., Zhou, S., Niu, M. M., Zhang, Y., Li, J., & Yang, L. (2023). Discovery of potent heat shock protein 90 (Hsp90) inhibitors: structure-based virtual screening, molecular dynamics simulation, and biological evaluation. Journal of Enzyme Inhibition and Medicinal Chemistry, 38(1), 2220558.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Li, Y., Zhang, D., Xu, J., Shi, J., Jiang, L., Yao, N., & Ye, W. (2012). Discovery and development of natural heat shock protein 90 inhibitors in cancer treatment. Acta Pharmaceutica Sinica B, 2(3), 238–245.

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Mr. Shrihari S, a proficient English language expert from the Department of Humanities and Social Sciences at Sri Venkateswara College of Engineering, Sriperumbudur, for meticulously and comprehensively editing the complete manuscript, ensuring grammatical accuracy, punctuation, spelling, and overall writing style.

Funding

The authors acknowledge the funding support by the Department of Science and Technology- Science and Engineering Research Board under Teachers Associateship Research Excellence (File number: SERB/TAR/2021/000250). Principal Investigator: Prof. P.K. Praveen Kumar, Mentor: Prof. M. Michael Gromiha.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Praveen Kumar.

Ethics declarations

Conflict of interest

The authors claim no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praveen Kumar, P.K., Sundar, H., Balakrishnan, K. et al. The Role of HSP90 and TRAP1 Targets on Treatment in Hepatocellular Carcinoma. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01151-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01151-4

Keywords

Navigation