Skip to main content
Log in

Exploring the Role of Ferroptosis-Related Circular RNAs in Subarachnoid Hemorrhage

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular event associated with high mortality and significant morbidity. Recent studies have highlighted the emerging role of ferroptosis, a novel form of regulated cell death, in the pathogenesis of SAH. Circular RNAs (circRNAs), have been found to play essential roles in various cellular processes, including gene regulation and disease pathogenesis. The expression profile of circRNAs in neural tissues, particularly in the brain, suggests their critical role in synaptic function and neurogenesis. Moreover, the interplay between circRNAs and ferroptosis-related pathways, such as iron metabolism and lipid peroxidation, is explored in the context of SAH. Understanding the functional roles of specific circRNAs in the context of SAH may provide potential therapeutic targets to attenuate ferroptosis-associated brain injury. Furthermore, the potential of circRNAs as diagnostic biomarkers for SAH severity, prognosis, and treatment response is discussed. Overall, this review highlights the significance of studying the intricate interplay between circRNAs and ferroptosis in the context of SAH. Unraveling the mechanisms by which circRNAs modulate ferroptotic cell death may pave the way for the development of novel therapeutic strategies and diagnostic approaches for SAH management, ultimately improving patient outcomes and quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

No Data associated in the manuscript.

References

  1. Macdonald, R. L., & Schweizer, T. A. (2017). Spontaneous subarachnoid haemorrhage. Lancet, 389(10069), 655–66.

    Article  PubMed  Google Scholar 

  2. de Rooij, N. K., Linn, F. H., van der Plas, J. A., Algra, A., & Rinkel, G. J. (2007). Incidence of subarachnoid haemorrhage: A systematic review with emphasis on region, age, gender and time trends. Journal of Neurology, Neurosurgery & Psychiatry, 78(12), 1365–72.

    Article  Google Scholar 

  3. Feigin, V. L., Lawes, C. M., Bennett, D. A., Barker-Collo, S. L., & Parag, V. (2009). Worldwide stroke incidence and early case fatality reported in 56 population-based studies: A systematic review. Lancet Neurol, 8(4), 355–69.

    Article  PubMed  Google Scholar 

  4. Cao, Y., Li, Y., He, C., Yan, F., Li, J. R., Xu, H. Z., et al. (2021). Selective ferroptosis inhibitor liproxstatin-1 attenuates neurological deficits and neuroinflammation after subarachnoid hemorrhage. Neuroscience Bulletin, 37(4), 535–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, H., Zhou, Y., Zhao, M., Yu, L., Lin, Y., & Kang, D. (2023). Ferrostatin-1 attenuates brain injury in animal model of subarachnoid hemorrhage via phospholipase A2 activity of PRDX6. Neuroreport, 34(12), 606–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Balihodzic, A., Prinz, F., Dengler, M. A., Calin, G. A., Jost, P. J., & Pichler, M. (2022). Non-coding RNAs and ferroptosis: Potential implications for cancer therapy. Cell Death & Differentiation, 29(6), 1094–106.

    Article  CAS  Google Scholar 

  7. Yang, J., Cao, X.-H., Luan, K.-F., & Huang, Y.-D. (2021). Circular RNA FNDC3B protects oral squamous cell carcinoma cells from ferroptosis and contributes to the malignant progression by regulating miR-520d-5p/SLC7A11 axis. Frontiers in Oncology, 11, 672724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xi, Y., Shen, Y., Wu, D., Zhang, J., Lin, C., Wang, L., et al. (2022). CircBCAR3 accelerates esophageal cancer tumorigenesis and metastasis via sponging miR-27a-3p. Molecular Cancer, 21(1), 1–20.

    Article  Google Scholar 

  9. Liu, B., Ma, H., Liu, X., & Xing, W. (2023). CircSCN8A suppresses malignant progression and induces ferroptosis in non-small cell lung cancer by regulating miR-1290/ACSL4 axis. Cell Cycle, 22(7), 758–76.

    Article  PubMed  Google Scholar 

  10. Luo, Y., Huang, Q., He, B., Liu, Y., Huang, S., & Xiao, J. (2021). Regulation of ferroptosis by non-coding RNAs in the development and treatment of cancer (Review). Oncology Reports, 45(1), 29–48.

    Article  PubMed  Google Scholar 

  11. Weng, R., Jiang, Z., & Gu, Y. (2022). Noncoding RNA as diagnostic and prognostic biomarkers in cerebrovascular disease. Oxidative Medicine and Cellular Longevity, 2022, 8149701.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen, X., Yang, S., Yang, J., Liu, Q., Li, M., Wu, J., et al. (2021). Circular RNA circDUS2 Is a potential biomarker for intracranial aneurysm. Frontiers in Aging Neuroscience, 13, 632448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou, W.-Y., Cai, Z.-R., Liu, J., Wang, D.-S., Ju, H.-Q., & Xu, R.-H. (2020). Circular RNA: Metabolism, functions and interactions with proteins. Molecular Cancer, 19(1), 172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gan, B. (2021). Mitochondrial regulation of ferroptosis. Journal of Cell Biology, 220(9), e202105043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Puig, S., Ramos-Alonso, L., Romero, A. M., & Martínez-Pastor, M. T. (2017). The elemental role of iron in DNA synthesis and repair. Metallomics, 9(11), 1483–500.

    Article  PubMed  Google Scholar 

  16. Galaris, D., Barbouti, A., & Pantopoulos, K. (2019). Iron homeostasis and oxidative stress: An intimate relationship. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1866(12), 118535.

    Article  CAS  PubMed  Google Scholar 

  17. Battaglia, A. M., Chirillo, R., Aversa, I., Sacco, A., Costanzo, F., & Biamonte, F. (2020). Ferroptosis and cancer: Mitochondria meet the “Iron Maiden” cell death. Cells, 9(6), 1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. DeGregorio-Rocasolano, N., Martí-Sistac, O., Ponce, J., Castelló-Ruiz, M., Millán, M., Guirao, V., et al. (2018). Iron-loaded transferrin (Tf) is detrimental whereas iron-free Tf confers protection against brain ischemia by modifying blood Tf saturation and subsequent neuronal damage. Redox Biology, 15, 143–58.

    Article  CAS  PubMed  Google Scholar 

  19. Capelletti, M. M., Manceau, H., Puy, H., & Peoc’h, K. (2020). Ferroptosis in liver diseases: An overview. International Journal of Molecular Sciences, 21(14), 4908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, N., Yu, X., Xie, J., & Xu, H. (2021). New insights into the role of ferritin in iron homeostasis and neurodegenerative diseases. Molecular Neurobiology, 58(6), 2812–23.

    Article  CAS  PubMed  Google Scholar 

  21. Abbate, V., & Hider, R. (2017). Iron in biology. Metallomics, 9(11), 1467–9.

    Article  PubMed  Google Scholar 

  22. Fontecave, M., & Pierre, J. L. (1993). Iron: Metabolism, toxicity and therapy. Biochimie, 75(9), 767–73.

    Article  CAS  PubMed  Google Scholar 

  23. Winterbourn, C. C. (1995). Toxicity of iron and hydrogen peroxide: The Fenton reaction. Toxicology Letters, 82–83, 969–74.

    Article  PubMed  Google Scholar 

  24. Hassannia, B., Vandenabeele, P., & Vanden, Berghe T. (2019). Targeting ferroptosis to iron out cancer. Cancer Cell, 35(6), 830–49.

    Article  CAS  PubMed  Google Scholar 

  25. Gaschler, M. M., & Stockwell, B. R. (2017). Lipid peroxidation in cell death. Biochemical and Biophysical Research Communications, 482(3), 419–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee, J.-Y., Keep, R. F., He, Y., Sagher, O., Hua, Y., & Xi, G. (2010). Hemoglobin and iron handling in brain after subarachnoid hemorrhage and the effect of deferoxamine on early brain injury. Journal of Cerebral Blood Flow & Metabolism, 30(11), 1793–803.

    Article  CAS  Google Scholar 

  27. Zhang, H., Ostrowski, R., Jiang, D., Zhao, Q., Liang, Y., Che, X., et al. (2021). Hepcidin promoted ferroptosis through iron metabolism which is associated with DMT1 signaling activation in early brain injury following subarachnoid hemorrhage. Oxidative Medicine and Cellular Longevity, 2021, 9800794.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kenny, E. M., Fidan, E., Yang, Q., Anthonymuthu, T. S., New, L. A., Meyer, E. A., et al. (2019). Ferroptosis contributes to neuronal death and functional outcome after traumatic brain injury. Critical Care Medicine, 47(3), 410–8.

    Article  PubMed  Google Scholar 

  29. Gomes, J. A., Selim, M., Cotleur, A., Hussain, M. S., Toth, G., Koffman, L., et al. (2014). Brain iron metabolism and brain injury following subarachnoid hemorrhage: iCeFISH-pilot (CSF iron in SAH). Neurocritical Care, 21(2), 285–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Galea, I., Durnford, A., Glazier, J., Mitchell, S., Kohli, S., Foulkes, L., et al. (2022). Iron deposition in the brain after aneurysmal subarachnoid hemorrhage. Stroke, 53(5), 1633–42.

    Article  CAS  PubMed  Google Scholar 

  31. Huang, Y., Wu, H., Hu, Y., Zhou, C., Wu, J., Wu, Y., et al. (2022). Puerarin attenuates oxidative stress and ferroptosis via AMPK/PGC1α/Nrf2 pathway after subarachnoid hemorrhage in rats. Antioxidants (Basel), 11(7), 1259.

    Article  CAS  PubMed  Google Scholar 

  32. Gao, S., Zhou, L., Lu, J., Fang, Y., Wu, H., Xu, W., et al. (2022). Cepharanthine attenuates early brain injury after subarachnoid hemorrhage in mice via inhibiting 15-lipoxygenase-1-mediated microglia and endothelial cell ferroptosis. Oxidative Medicine and Cellular Longevity, 2022, 4295208.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liang, D., Minikes, A. M., & Jiang, X. (2022). Ferroptosis at the intersection of lipid metabolism and cellular signaling. Molecular Cell, 82(12), 2215–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Doll, S., Proneth, B., Tyurina, Y. Y., Panzilius, E., Kobayashi, S., Ingold, I., et al. (2017). ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nature Chemical Biology, 13(1), 91–8.

    Article  CAS  PubMed  Google Scholar 

  35. Cui, J., Wang, Y., Tian, X., Miao, Y., Ma, L., Zhang, C., et al. (2023). LPCAT3 is transcriptionally regulated by YAP/ZEB/EP300 and collaborates with ACSL4 and YAP to determine ferroptosis sensitivity. Antioxidants & Redox Signaling, 39, 491–511.

    Article  CAS  Google Scholar 

  36. Dixon, S. J., Winter, G. E., Musavi, L. S., Lee, E. D., Snijder, B., Rebsamen, M., et al. (2015). Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chemical Biology, 10(7), 1604–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Feng, H., & Stockwell, B. R. (2018). Unsolved mysteries: How does lipid peroxidation cause ferroptosis? PLoS Biology, 16(5), e2006203.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liao, P., Wang, W., Wang, W., Kryczek, I., Li, X., Bian, Y., et al. (2022). CD8(+) T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell, 40(4), 365–78.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hirashima, Y., Doshi, M., Hayashi, N., Endo, S., Akazawa, Y., Shichiri, M., et al. (2012). Plasma platelet-activating factor-acetyl hydrolase activity and the levels of free forms of biomarker of lipid peroxidation in cerebrospinal fluid of patients with aneurysmal subarachnoid hemorrhage. Neurosurgery, 70(3), 602–9.

    Article  PubMed  Google Scholar 

  40. Li, Y., Liu, Y., Wu, P., Tian, Y., Liu, B., Wang, J., et al. (2021). Inhibition of ferroptosis alleviates early brain injury after subarachnoid hemorrhage in vitro and in vivo via reduction of lipid peroxidation. Cellular and Molecular Neurobiology, 41(2), 263–78.

    Article  CAS  PubMed  Google Scholar 

  41. Fan, B. Y., Pang, Y. L., Li, W. X., Zhao, C. X., Zhang, Y., Wang, X., et al. (2021). Liproxstatin-1 is an effective inhibitor of oligodendrocyte ferroptosis induced by inhibition of glutathione peroxidase 4. Neural Regeneration Research, 16(3), 561–6.

    Article  CAS  PubMed  Google Scholar 

  42. Qu, X. F., Liang, T. Y., Wu, D. G., Lai, N. S., Deng, R. M., Ma, C., et al. (2021). Acyl-CoA synthetase long chain family member 4 plays detrimental role in early brain injury after subarachnoid hemorrhage in rats by inducing ferroptosis. CNS Neuroscience & Therapeutics, 27(4), 449–63.

    Article  CAS  Google Scholar 

  43. Jiao, D., Xu, J., Lou, C., Luo, Y., Ni, C., Shen, G., et al. (2023). Quercetin alleviates subarachnoid hemorrhage-induced early brain injury via inhibiting ferroptosis in the rat model. Anatomical Record (Hoboken), 306(3), 638–50.

    Article  CAS  Google Scholar 

  44. Zhang, X.-S., Lu, Y., Tao, T., Wang, H., Liu, G.-J., Liu, X.-Z., et al. (2020). Fucoxanthin mitigates subarachnoid hemorrhage-induced oxidative damage via sirtuin 1-dependent pathway. Molecular Neurobiology, 57(12), 5286–98.

    Article  CAS  PubMed  Google Scholar 

  45. Zheng, B., Zhou, X., Pang, L., Che, Y., & Qi, X. (2021). Baicalin suppresses autophagy-dependent ferroptosis in early brain injury after subarachnoid hemorrhage. Bioengineered, 12(1), 7794–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, X., Wu, Q., Lu, Y., Wan, J., Dai, H., Zhou, X., et al. (2018). Cerebroprotection by salvianolic acid B after experimental subarachnoid hemorrhage occurs via Nrf2- and SIRT1-dependent pathways. Free Radical Biology and Medicine, 124, 504–16.

    Article  CAS  PubMed  Google Scholar 

  47. Liu, M. R., Zhu, W. T., & Pei, D. S. (2021). System Xc(-): A key regulatory target of ferroptosis in cancer. Investigational New Drugs, 39(4), 1123–31.

    Article  CAS  PubMed  Google Scholar 

  48. Tang, D., & Kroemer, G. (2020). Ferroptosis. Current Biology, 30(21), R1292-r7.

    Article  Google Scholar 

  49. Liu, Y., Fang, Y., Zhang, Z., Luo, Y., Zhang, A., Lenahan, C., et al. (2022). Ferroptosis: An emerging therapeutic target in stroke. Journal of Neurochemistry, 160(1), 64–73.

    Article  CAS  PubMed  Google Scholar 

  50. Pan, F., Xu, W., Ding, J., & Wang, C. (2022). Elucidating the progress and impact of ferroptosis in hemorrhagic stroke. Frontiers in Cell Neuroscience, 16, 1067570.

    Article  CAS  Google Scholar 

  51. Guo, Y., Liu, X., Liu, D., Li, K., Wang, C., Liu, Y., et al. (2019). Inhibition of BECN1 suppresses lipid peroxidation by increasing system Xc- activity in early brain injury after subarachnoid hemorrhage. Journal of Molecular Neuroscience, 67(4), 622–31.

    Article  CAS  PubMed  Google Scholar 

  52. Bersuker, K., Hendricks, J. M., Li, Z., Magtanong, L., Ford, B., Tang, P. H., et al. (2019). The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature, 575(7784), 688–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yuan, B., Zhao, X.-D., Shen, J.-D., Chen, S.-J., Huang, H.-Y., Zhou, X.-M., et al. (2022). Activation of SIRT1 alleviates ferroptosis in the early brain injury after subarachnoid hemorrhage. Oxidative Medicine and Cellular Longevity, 2022, 9069825.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mishima, E., Ito, J., Wu, Z., Nakamura, T., Wahida, A., Doll, S., et al. (2022). A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature, 608(7924), 778–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang, Y., Wu, H., Hu, Y., Zhou, C., Wu, J., Wu, Y., et al. (2022). Puerarin attenuates oxidative stress and ferroptosis via AMPK/PGC1α/Nrf2 pathway after subarachnoid hemorrhage in rats. Antioxidants (Basel), 11(7), 1259.

    Article  CAS  PubMed  Google Scholar 

  56. Gao, S., Zhou, L., Lu, J., Fang, Y., Wu, H., Xu, W., et al. (2022). Cepharanthine attenuates early brain injury after subarachnoid hemorrhage in mice via inhibiting 15-lipoxygenase-1-mediated microglia and endothelial cell ferroptosis. Oxidative Medicine and Cellular Longevity, 2022, 4295208.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cao, Y., Li, Y., He, C., Yan, F., Li, J.-R., Xu, H.-Z., et al. (2021). Selective Ferroptosis inhibitor liproxstatin-1 attenuates neurological deficits and neuroinflammation after subarachnoid hemorrhage. Neuroscience Bulletin, 37(4), 535–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen, L.-L., & Yang, L. (2015). Regulation of circRNA biogenesis. RNA Biology, 12(4), 381–8.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhang, X., Wang, S., Wang, H., Cao, J., Huang, X., Chen, Z., et al. (2019). Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Molecular Cancer, 18(1), 20.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zang, J., Lu, D., & Xu, A. (2020). The interaction of circRNAs and RNA binding proteins: An important part of circRNA maintenance and function. Journal of Neuroscience Research, 98(1), 87–97.

    Article  CAS  PubMed  Google Scholar 

  61. Liu, Z., Wang, Q., Wang, X., Xu, Z., Wei, X., & Li, J. (2020). Circular RNA cIARS regulates ferroptosis in HCC cells through interacting with RNA binding protein ALKBH5. Cell Death Discovery, 6(1), 72.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zhou, X., Zhan, L., Huang, K., & Wang, X. (2020). The functions and clinical significance of circRNAs in hematological malignancies. Journal of Hematology & Oncology, 13(1), 138.

    Article  Google Scholar 

  63. Li, F., Li, P.-F., & Hao, X.-D. (2023). Circular RNAs in ferroptosis: Regulation mechanism and potential clinical application in disease. Frontiers in Pharmacology, 14, 1173040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yang, R., Ma, L., Wan, J., Li, Z., Yang, Z., Zhao, Z., et al. (2023). Ferroptosis-associated circular RNAs: Opportunities and challenges in the diagnosis and treatment of cancer. Frontiers in Cell and Developmental Biology, 11, 1160381.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Xing, N., Du, Q., Guo, S., Xiang, G., Zhang, Y., Meng, X., et al. (2023). Ferroptosis in lung cancer: A novel pathway regulating cell death and a promising target for drug therapy. Cell Death Discovery, 9(1), 110.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Jin, J., Wang, Y., Zheng, D., Liang, M., & He, Q. (2022). A novel identified circular RNA, mmu_mmu_circRNA_0000309, involves in germacrone-mediated improvement of diabetic nephropathy through regulating ferroptosis by targeting miR-188-3p/GPX4 signaling axis. Antioxidants & Redox Signaling, 36(10–12), 740–59.

    Article  CAS  Google Scholar 

  67. Wang, H.-H., Ma, J.-N., & Zhan, X.-R. (2021). Circular RNA Circ_0067934 attenuates ferroptosis of thyroid cancer cells by miR-545-3p/SLC7A11 signaling. Frontiers in Endocrinology, 12, 670031.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Pan, C.-F., Wei, K., Ma, Z.-J., He, Y.-Z., Huang, J.-J., Guo, Z.-Z., et al. (2022). CircP4HB regulates ferroptosis via SLC7A11-mediated glutathione synthesis in lung adenocarcinoma. Translational Lung Cancer Research, 11(3), 366–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang, X., Xu, Y., Ma, L., Yu, K., Niu, Y., Xu, X., et al. (2022). Essential roles of exosome and circRNA_101093 on ferroptosis desensitization in lung adenocarcinoma. Cancer Communications, 42(4), 287–313.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wang, Y., Chen, H., & Wei, X. (2021). Circ_0007142 downregulates miR-874-3p-mediated GDPD5 on colorectal cancer cells. European Journal of Clinical Investigation, 51(7), e13541.

    Article  CAS  PubMed  Google Scholar 

  71. Li, F., Li, P.-F., & Hao, X.-D. (2023). Circular RNAs in ferroptosis: Regulation mechanism and potential clinical application in disease. Frontiers In Pharmacology, 14, 1173040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jin, J., Wang, Y., Zheng, D., Liang, M., & He, Q. (2022). A novel identified circular RNA, mmu_mmu_circRNA_0000309, involves in germacrone-mediated improvement of diabetic nephropathy through regulating ferroptosis by targeting miR-188-3p/GPX4 signaling axis. Antioxidants & Redox Signaling, 36(10–12), 740–59.

    Article  CAS  Google Scholar 

  73. Chen, X., Kang, R., Kroemer, G., & Tang, D. (2021). Broadening horizons: The role of ferroptosis in cancer. Nature Reviews Clinical Oncology, 18(5), 280–96.

    Article  CAS  PubMed  Google Scholar 

  74. Koppula, P., Zhuang, L., & Gan, B. (2021). Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein & Cell, 12(8), 599–620.

    Article  CAS  Google Scholar 

  75. Wang, Z.-Y., Wen, Z.-J., Xu, H.-M., Zhang, Y., & Zhang, Y.-F. (2022). Exosomal noncoding RNAs in central nervous system diseases: Biological functions and potential clinical applications. Frontiers in Molecular Neuroscience, 15, 1004221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bazhabayi, M., Qiu, X., Li, X., Yang, A., Wen, W., Zhang, X., et al. (2021). CircGFRA1 facilitates the malignant progression of HER-2-positive breast cancer via acting as a sponge of miR-1228 and enhancing AIFM2 expression. Journal of Cellular and Molecular Medicine, 25(21), 10248–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ou, R., Lu, S., Wang, L., Wang, Y., Lv, M., Li, T., et al. (2022). Circular RNA circLMO1 suppresses cervical cancer growth and metastasis by triggering miR-4291/ACSL4-mediated ferroptosis. Frontiers in Oncology, 12, 858598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mao, R., & Liu, H. (2022). Depletion of mmu_circ_0001751 (circular RNA Carm1) protects against acute cerebral infarction injuries by binding with microRNA-3098-3p to regulate acyl-CoA synthetase long-chain family member 4. Bioengineered, 13(2), 4063–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wu, Q., Deng, Z., Pan, X., Shen, H.-B., Choi, K.-S., Wang, S., et al. (2022). MDGF-MCEC: A multi-view dual attention embedding model with cooperative ensemble learning for CircRNA-disease association prediction. Briefings in Bioinformatics, 23(5), bbac289.

    Article  PubMed  Google Scholar 

  80. Zheng, J., Sato, M., Mishima, E., Sato, H., Proneth, B., & Conrad, M. (2021). Sorafenib fails to trigger ferroptosis across a wide range of cancer cell lines. Cell Death & Disease, 12(7), 698.

    Article  CAS  Google Scholar 

  81. Jiang, M., Mo, R., Liu, C., & Wu, H. (2022). Expression of Concern: Circ_0000190 sponges miR-382-5p to suppress cell proliferation and motility and promote cell death by targeting ZNRF3 in gastric cancer. Journal of Biochemistry.

  82. Jiang, M., Mo, R., Liu, C., & Wu, H. (2022). Circ_0000190 sponges miR-382-5p to suppress cell proliferation and motility and promote cell death by targeting ZNRF3 in gastric cancer. Journal of Biochemistry.

  83. Arabpour, J., Rezaei, K., Khojini, J. Y., Razi, S., Hayati, M. J., & Gheibihayat, S. M. (2024). The potential role and mechanism of circRNAs in ferroptosis: A comprehensive review. Pathology-Research and Practice, 255, 155203.

    Article  CAS  PubMed  Google Scholar 

  84. Wu, C., Du, M., Yu, R., Cheng, Y., Wu, B., Fu, J., et al. (2022). A novel mechanism linking ferroptosis and endoplasmic reticulum stress via the circPtpn14/miR-351-5p/5-LOX signaling in melatonin-mediated treatment of traumatic brain injury. Free Radical Biology and Medicine, 178, 271–94.

    Article  CAS  PubMed  Google Scholar 

  85. Jiang, Y., Zhao, J., Li, R., Liu, Y., Zhou, L., Wang, C., et al. (2022). CircLRFN5 inhibits the progression of glioblastoma via PRRX2/GCH1 mediated ferroptosis. Journal of Experimental & Clinical Cancer Research, 41(1), 307.

    Article  CAS  Google Scholar 

  86. Wu, N., Zhu, D., Li, J., Li, X., Zhu, Z., Rao, Q., et al. (2023). CircOMA1 modulates cabergoline resistance by downregulating ferroptosis in prolactinoma. Journal of Endocrinological Investigation, 46(8), 1573–87.

    Article  CAS  PubMed  Google Scholar 

  87. Wu, X. B., Wu, Y. T., Guo, X. X., Xiang, C., Chen, P. S., Qin, W., et al. (2022). Circular RNA hsa_circ_0007990 as a blood biomarker for unruptured intracranial aneurysm with aneurysm wall enhancement. Frontiers in Immunology, 13, 1061592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen, X., Yang, S., Yang, J., Liu, Q., Li, M., Wu, J., et al. (2021). Circular RNA circDUS2 is a potential biomarker for intracranial aneurysm. Frontiers in Aging Neuroscience, 13, 632448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Huang, Q., Sun, Y., Huang, Q., Zeng, Y., Lin, S., Huang, S., et al. (2021). Association between circular RNAs and intracranial aneurysm rupture under the synergistic effect of individual environmental factors. Frontiers in Neurology, 12, 594835.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ma, Y., Zhang, B., Zhang, D., Wang, S., Li, M., & Zhao, J. (2021). Differentially expressed circular RNA profile in an intracranial aneurysm group compared with a healthy control group. Disease Markers, 2021, 8889569.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Cao, H., Chen, J., Lai, X., Liu, T., Qiu, P., Que, S., et al. (2021). Circular RNA expression profile in human primary multiple intracranial aneurysm. Experimental and Therapeutic Medicine, 21(3), 239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wu, C., Du, M., Yu, R., Cheng, Y., Wu, B., Fu, J., et al. (2022). A novel mechanism linking ferroptosis and endoplasmic reticulum stress via the circPtpn14/miR-351-5p/5-LOX signaling in melatonin-mediated treatment of traumatic brain injury. Free Radical Biology and Medicine, 178, 271–94.

    Article  CAS  PubMed  Google Scholar 

  93. Jiang, Y., Zhao, J., Li, R., Liu, Y., Zhou, L., Wang, C., et al. (2022). CircLRFN5 inhibits the progression of glioblastoma via PRRX2/GCH1 mediated ferroptosis. Journal of Experimental & Clinical Cancer Research, 41(1), 307.

    Article  CAS  Google Scholar 

  94. Wu, N., Zhu, D., Li, J., Li, X., Zhu, Z., Rao, Q., et al. (2023). CircOMA1 modulates cabergoline resistance by downregulating ferroptosis in prolactinoma. Journal of Endocrinological Investigation, 46(8), 1573–87.

    Article  CAS  PubMed  Google Scholar 

  95. Wu, X.-B., Wu, Y.-T., Guo, X.-X., Xiang, C., Chen, P.-S., Qin, W., et al. (2022). Circular RNA hsa_circ_0007990 as a blood biomarker for unruptured intracranial aneurysm with aneurysm wall enhancement. Frontiers in Immunology, 13, 1061592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

YS: Conceptualization, Writing − original draft preparation, Writing − review & editing. XL: Data curation. LY: Writing − review & editing. YC: Writing − review & editing, Data curation. XM: Writing − review & editing

Corresponding author

Correspondence to Xinfa Mao.

Ethics declarations

Competing interests

The authors have no competing conflicts of interests to declare.

Consent for Publication

Not applicable.

Ethics Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Luo, X., Yao, L. et al. Exploring the Role of Ferroptosis-Related Circular RNAs in Subarachnoid Hemorrhage. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01140-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01140-7

Keywords

Navigation