Skip to main content

Advertisement

Log in

Identification of Hub Genes Associated with Resistance to Prednisolone in Acute Lymphoblastic Leukemia Based on Weighted Gene Co-expression Network Analysis

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Resistance against glucocorticoids which are used to reduce inflammation and treatment of a number of diseases, including leukemia, is known as the first stage of treatment failure in acute lymphoblastic leukemia. Since these drugs are the essential components of chemotherapy regimens for ALL and play an important role in stop of cell growth and induction of apoptosis, it is important to identify genes and the molecular mechanism that may affect glucocorticoid resistance. In this study, we used the GSE66705 dataset and weighted gene co-expression network analysis (WGCNA) to identify modules that correlated more strongly with prednisolone resistance in type B lymphoblastic leukemia patients. The PPI network was built using the DEGs key modules and the STRING database. Finally, we used the overlapping data to identify hub genes. out of a total of 12 identified modules by WGCNA, the blue module was find to have the most statistically significant correlation with prednisolone resistance and Nine genes including SOD1, CD82, FLT3, GART, HPRT1, ITSN1, TIAM1, MRPS6, MYC were recognized as hub genes Whose expression changes can be associated with prednisolone resistance. Enrichment analysis based on the MsigDB repository showed that the altered expressed genes of the blue module were mainly enriched in IL2_STAT5, KRAS, MTORC1, and IL6-JAK-STAT3 pathways, and their expression changes can be related to cell proliferation and survival. The analysis performed by the WGCNA method introduced new genes. The role of some of these genes was previously reported in the resistance to chemotherapy in other diseases. This can be used as clues to detect treatment-resistant (drug-resistant) cases in the early stages of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3

Similar content being viewed by others

Data Availability

Supporting and raw data are available upon a reasonable request to the corresponding author.

Abbreviations

ALL:

Acute lymphoblastic leukemia

GC:

Glucocorticoids

GR:

Glucocorticoid resistance

GEO:

Gene expression omnibus

WGCNA:

Weighted gene co-expression network analysis

PPI network:

Protein interaction protein network

DEG:

Differentially expressed gene

logFC:

Log2-fold change

FDR:

False discover rate

GEO:

Gene expression omnibus

SOD1:

Superoxide dismutase type 1

FLT3:

Fms-related receptor tyrosine kinase 3

GART:

Glycinamide ribonucleotide transformylase

HPRT1:

Hypoxanthine phosphoribosyl transferase 1

ITSN1:

Intersectin-1

TIAM1:

T-Cell lymphoma invasion and metastasis 1

MRPS6:

Mitochondrial ribosomal protein S6

References

  1. Esparza, S. D., & Sakamoto, K. M. (2005). Topics in pediatric leukemia–acute lymphoblastic leukemia. Medscape General Medicine., 7(1), 23.

    PubMed  PubMed Central  Google Scholar 

  2. Güneş, A. M., Ören, H., Baytan, B., Bengoa, ŞY., Evim, M. S., Gözmen, S., et al. (2014). The long-term results of childhood acute lymphoblastic leukemia at two centers from Turkey: 15 years of experience with the ALL-BFM 95 protocol. Annals of Hematology., 93(10), 1677–1684.

    Article  PubMed  Google Scholar 

  3. Cooper, S. L., & Brown, P. A. (2015). Treatment of pediatric acute lymphoblastic leukemia. Pediatric Clinics., 62(1), 61–73.

    PubMed  Google Scholar 

  4. Locatelli, F., Schrappe, M., Bernardo, M. E., & Rutella, S. (2012). How I treat relapsed childhood acute lymphoblastic leukemia Blood. The Journal of the American Society of Hematology., 120(14), 2807–2816.

    CAS  Google Scholar 

  5. Pui, C.-H., & Ribeiro, R. C. (2003). International collaboration on childhood leukemia. International Journal of Hematology., 78(5), 383–389.

    Article  PubMed  Google Scholar 

  6. Renner, K., Ausserlechner, M., & Kofler, R. (2003). A conceptual view on glucocorticoid-induced apoptosis, cell cycle arrest and glucocorticoid resistance in lymphoblastic leukemia. Current Molecular Medicine., 3(8), 707–717.

    Article  CAS  PubMed  Google Scholar 

  7. Sionov, R. V., Spokoini, R., Kfir-Erenfeld, S., Cohen, O., & Yefenof, E. (2008). Mechanisms regulating the susceptibility of hematopoietic malignancies to glucocorticoid-induced apoptosis. Advances in Cancer Research., 101, 127–248.

    Article  CAS  PubMed  Google Scholar 

  8. Smith, L. K., & Cidlowski, J. A. (2010). Glucocorticoid-induced apoptosis of healthy and malignant lymphocytes. Progress in Brain Research., 182, 1–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gao, J., & Liu, W. (2018). Prognostic value of the response to prednisone for children with acute lymphoblastic leukemia: A meta-analysis. European Review for Medical and Pharmacological Sciences, 22(22), 7858–7866.

    CAS  PubMed  Google Scholar 

  10. Gaipa, G., Basso, G., Biondi, A., & Campana, D. (2013). Detection of minimal residual disease in pediatric acute lymphoblastic leukemia. Cytometry Part B: Clinical Cytometry., 84(6), 359–369.

    Article  PubMed  Google Scholar 

  11. Liang, Y.-N., Tang, Y.-L., Ke, Z.-Y., Chen, Y.-Q., Luo, X.-Q., Zhang, H., et al. (2017). MiR-124 contributes to glucocorticoid resistance in acute lymphoblastic leukemia by promoting proliferation, inhibiting apoptosis and targeting the glucocorticoid receptor. The Journal of Steroid Biochemistry and Molecular Biology., 172, 62–68.

    Article  CAS  PubMed  Google Scholar 

  12. Scheijen, B. (2019). Molecular mechanisms contributing to glucocorticoid resistance in lymphoid malignancies. Cancer Drug Resistance., 2(3), 647.

    PubMed  PubMed Central  Google Scholar 

  13. Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M., et al. (2012). NCBI GEO: Archive for functional genomics data sets—update. Nucleic Acids Research., 41(D1), D991–D995.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J., Scherf, U., et al. (2003). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 4(2), 249–264.

    Article  PubMed  Google Scholar 

  15. Alibés, A., Yankilevich, P., & Díaz-Uriarte, R. (2007). IDconverter and IDClight: Conversion and annotation of gene and protein IDs. BMC Bioinformatics, 8(1), 1–9.

    Article  Google Scholar 

  16. Udhaya Kumar, S., Thirumal Kumar, D., Bithia, R., Sankar, S., Magesh, R., Sidenna, M., et al. (2020). Analysis of differentially expressed genes and molecular pathways in familial hypercholesterolemia involved in atherosclerosis: A systematic and bioinformatics approach. Frontiers in Genetics., 11, 734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Langfelder, P., & Horvath, S. (2008). WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 9(1), 1–13.

    Article  Google Scholar 

  18. Langfelder P, Horvath S. Tutorials for the WGCNA Package. UCLA Los Ageles. 2014.

  19. Liu, W., Li, L., & Li, W. (2014). Gene co-expression analysis identifies common modules related to prognosis and drug resistance in cancer cell lines. International Journal of Cancer., 135(12), 2795–2803.

    Article  CAS  PubMed  Google Scholar 

  20. Langfelder, P., Luo, R., Oldham, M. C., & Horvath, S. (2011). Is my network module preserved and reproducible? PLoS Computational Biology., 7(1), e1001057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Motieghader, H., Kouhsar, M., Najafi, A., Sadeghi, B., & Masoudi-Nejad, A. (2017). mRNA–miRNA bipartite network reconstruction to predict prognostic module biomarkers in colorectal cancer stage differentiation. Molecular BioSystems., 13(10), 2168–2180.

    Article  CAS  PubMed  Google Scholar 

  22. Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., et al. (2015). STRING v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Research., 43(D1), D447–D452.

    Article  CAS  PubMed  Google Scholar 

  23. Chin, C.-H., Chen, S.-H., Wu, H.-H., Ho, C.-W., Ko, M.-T., & Lin, C.-Y. (2014). cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology., 8(4), 1–7.

    Google Scholar 

  24. Olivas-Aguirre, M., Torres-López, L., Pottosin, I., & Dobrovinskaya, O. (2021). Overcoming glucocorticoid resistance in acute lymphoblastic leukemia: Repurposed drugs can improve the protocol. Frontiers in Oncology., 11, 617937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen, Y., Jiang, P., Wen, J., Wu, Z., Li, J., Chen, Y., et al. (2020). Integrated bioinformatics analysis of the crucial candidate genes and pathways associated with glucocorticoid resistance in acute lymphoblastic leukemia. Cancer Medicine., 9(8), 2918–2929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, S., Fu, L., Tian, T., Deng, L., Li, H., Xia, W., et al. (2018). Disrupting SOD1 activity inhibits cell growth and enhances lipid accumulation in nasopharyngeal carcinoma. Cell Communication and Signaling., 16(1), 1–13.

    Article  Google Scholar 

  27. Fitzpatrick, D. P., You, J. S., Bemis, K. G., Wery, J. P., Ludwig, J. R., & Wang, M. (2007). Searching for potential biomarkers of cisplatin resistance in human ovarian cancer using a label-free LC/MS-based protein quantification method. Proteomics-Clinical Applications, 1(3), 246–63.

    Article  CAS  PubMed  Google Scholar 

  28. Brown, D. P., Chin-Sinex, H., Nie, B., Mendonca, M. S., & Wang, M. (2009). Targeting superoxide dismutase 1 to overcome cisplatin resistance in human ovarian cancer. Cancer Chemotherapy and Pharmacology., 63(4), 723–730.

    Article  CAS  PubMed  Google Scholar 

  29. Battisti, V., Maders, L. D., Bagatini, M. D., Santos, K. F., Spanevello, R. M., Maldonado, P. A., et al. (2008). Measurement of oxidative stress and antioxidant status in acute lymphoblastic leukemia patients. Clinical Biochemistry., 41(7–8), 511–518.

    Article  CAS  PubMed  Google Scholar 

  30. Rasool, M., Farooq, S., Malik, A., Shaukat, A., Manan, A., Asif, M., et al. (2015). Assessment of circulating biochemical markers and antioxidative status in acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) patients. Saudi Journal of Biological Sciences., 22(1), 106–111.

    Article  CAS  PubMed  Google Scholar 

  31. Mahmoud, L. B., Mdhaffar, M., Ghozzi, H., Ammar, M., Hakim, A., Atheymen, R., et al. (2017). Oxidative stress in Tunisian patients with acute lymphoblastic leukemia and its involvement in leukaemic relapse. Journal of Pediatric Hematology/Oncology., 39(3), e124.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen, Y.-L., & Kan, W.-M. (2015). Down-regulation of superoxide dismutase 1 by PMA is involved in cell fate determination and mediated via protein kinase D2 in myeloid leukemia cells. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. https://doi.org/10.1016/j.bbamcr.2015.07.025

    Article  PubMed  Google Scholar 

  33. Nishioka, C., Ikezoe, T., Yang, J., & Yokoyama, A. (2015). Tetraspanin family member, CD82, regulates expression of EZH2 via inactivation of p38 MAPK signaling in leukemia cells. PLoS ONE, 10(5), e0125017.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dong, J.-T., Suzuki, H., Pin, S. S., Bova, G. S., Schalken, J. A., Isaacs, W. B., et al. (1996). Down-regulation of the KAI1 metastasis suppressor gene during the progression of human prostatic cancer infrequently involves gene mutation or allelic loss. Cancer Research., 56(19), 4387–4390.

    CAS  PubMed  Google Scholar 

  35. Yang, X., Wei, L. L., Tang, C., Slack, R., Mueller, S., & Lippman, M. E. (2001). Overexpression of KAI1 suppresses in vitro invasiveness and in vivo metastasis in breast cancer cells. Cancer research., 61(13), 5284–5288.

    CAS  PubMed  Google Scholar 

  36. Ji, H., Chen, L., Dai, Y., Sun, X., Li, X., Wang, Q., et al. (2017). Aberrant expression of CD133 and CD82 in patients with pediatric acute lymphoblastic leukemia and the clinical significance. Oncology Letters., 14(5), 5811–5818.

    PubMed  PubMed Central  Google Scholar 

  37. Floren, M., Restrepo Cruz, S., Termini, C. M., Marjon, K. D., Lidke, K. A., & Gillette, J. M. (2020). Tetraspanin CD82 drives acute myeloid leukemia chemoresistance by modulating protein kinase C alpha and β1 integrin activation. Oncogene, 39(19), 3910–3925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gilliland, D. G., & Griffin, J. D. (2002). The roles of FLT3 in hematopoiesis and leukemia Blood. The Journal of the American Society of Hematology., 100(5), 1532–1542.

    CAS  Google Scholar 

  39. Piovan, E., Yu, J., Tosello, V., Herranz, D., Ambesi-Impiombato, A., Da Silva, A. C., et al. (2013). Direct reversal of glucocorticoid resistance by AKT inhibition in acute lymphoblastic leukemia. Cancer Cell, 24(6), 766–776.

    Article  CAS  PubMed  Google Scholar 

  40. Chougule, R. A., Shah, K., Moharram, S. A., Vallon-Christersson, J., & Kazi, J. U. (2019). Glucocorticoid-resistant B cell acute lymphoblastic leukemia displays receptor tyrosine kinase activation. NPJ Genomic Medicine., 4(1), 1–7.

    Article  Google Scholar 

  41. Townsend, M. H., Robison, R. A., & O’Neill, K. L. (2018). A review of HPRT and its emerging role in cancer. Medical Oncology., 35(6), 1–6.

    Article  CAS  Google Scholar 

  42. Ahmadi, M., Eftekhari Kenzerki, M., Akrami, S. M., Pashangzadeh, S., Hajiesmaeili, F., Rahnavard, S., et al. (2021). Overexpression of HPRT1 is associated with poor prognosis in head and neck squamous cell carcinoma. FEBS Open Bio, 11(9), 2525–2540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu, T., Jiao, Z., Li, Y., Su, X., Yao, F., Peng, J., et al. (2022). HPRT1 promotes chemoresistance in oral squamous cell carcinoma via activating MMP1/PI3K/Akt signaling pathway. Cancers, 14(4), 855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yin, J., Ren, W., Huang, X., Deng, J., Li, T., & Yin, Y. (2018). Potential mechanisms connecting purine metabolism and cancer therapy. Frontiers in Immunology., 9, 1697.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhang, C. C., Boritzki, T. J., & Jackson, R. C. (1997). An inhibitor of glycinamide ribonucleotide formyltransferase is selectively cytotoxic to cells that lack a functional G1 checkpoint. Cancer Chemotherapy and Pharmacology., 41, 223–228.

    Article  Google Scholar 

  46. Bronder, J. L., & Moran, R. G. (2002). Antifolates targeting purine synthesis allow entry of tumor cells into S phase regardless of p53 function. Cancer Research., 62(18), 5236–5241.

    CAS  PubMed  Google Scholar 

  47. Oviya, R. P., Gopal, G., Shirley, S. S., Sridevi, V., Jayavelu, S., & Rajkumar, T. (2021). Mitochondrial ribosomal small subunit proteins (MRPS) MRPS6 and MRPS23 show dysregulation in breast cancer affecting tumorigenic cellular processes. Gene, 790, 145697.

    Article  CAS  PubMed  Google Scholar 

  48. Lin, X., Guo, L., Lin, X., Wang, Y., & Zhang, G. (2022). Expression and prognosis analysis of mitochondrial ribosomal protein family in breast cancer. Scientific Reports., 12(1), 1–13.

    Google Scholar 

  49. Predescu, S. A., Predescu, D. N., Knezevic, I., Klein, I. K., & Malik, A. B. (2007). Intersectin-1s regulates the mitochondrial apoptotic pathway in endothelial cells. Journal of Biological Chemistry., 282(23), 17166–17178.

    Article  CAS  PubMed  Google Scholar 

  50. Xie, C., Xiong, W., Li, J., Wang, X., Xu, C., & Yang, L. (2019). Intersectin 1 (ITSN1) identified by comprehensive bioinformatic analysis and experimental validation as a key candidate biological target in breast cancer. OncoTargets and Therapy., 12, 7079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Minard, M. E., Herynk, M. H., Collard, J. G., & Gallick, G. E. (2005). The guanine nucleotide exchange factor Tiam1 increases colon carcinoma growth at metastatic sites in an orthotopic nude mouse model. Oncogene, 24(15), 2568–2573.

    Article  CAS  PubMed  Google Scholar 

  52. Liang, J., Oyang, L., Rao, S., Han, Y., Luo, X., Yi, P., et al. (2021). Rac1, a potential target for tumor therapy. Frontiers in Oncology., 11, 674426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Izumi, D., Toden, S., Ureta, E., Ishimoto, T., Baba, H., & Goel, A. (2019). TIAM1 promotes chemoresistance and tumor invasiveness in colorectal cancer. Cell Death & Disease., 10(4), 1–12.

    Article  CAS  Google Scholar 

  54. Qiao, J., Li, M., Li, N., Xu, L., Huang, G., & Yu, J. (2020). TIAM1 upregulation confers NVP-BEZ235 resistance to breast cancer cells through FGFR/STAT3 pathway. Biochemical Genetics., 58(6), 953–965.

    Article  PubMed  Google Scholar 

  55. Kanagalingam, T., Solomon, L., Vijeyakumaran, M., Palikhe, N. S., Vliagoftis, H., & Cameron, L. (2019). IL-2 modulates Th2 cell responses to glucocorticosteroid: A cause of persistent type 2 inflammation? Immunity, Inflammation and Disease., 7(3), 112–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Biola, A., Lefebvre, P., Perrin-Wolff, M., Sturm, M., Bertoglio, J., & Pallardy, M. (2001). Interleukin-2 inhibits glucocorticoid receptor transcriptional activity through a mechanism involving STAT5 (signal transducer and activator of transcription 5) but not AP-1. Molecular Endocrinology., 15(7), 1062–1076.

    Article  CAS  PubMed  Google Scholar 

  57. Goleva, E., Kisich, K. O., & Leung, D. Y. (2002). A role for STAT5 in the pathogenesis of IL-2-induced glucocorticoid resistance. The Journal of Immunology., 169(10), 5934–5940.

    Article  CAS  PubMed  Google Scholar 

  58. Van der Zwet JC, Buijs-Gladdines JG, Hagelaar R, Smits WK, Vroegindeweij E, Graus LT, et al. STAT5 does not drive steroid resistance in T-cell acute lymphoblastic leukemia despite the activation of BCL2 and BCLXL following glucocorticoid treatment. Haematologica. 2020.

  59. Mohamed, A. N. (2018). MYC (MYC proto-oncogene, bHLH transcription factor). Atlas Genet Cytogenet Oncol Haematol., 22(6), 227–232.

    Google Scholar 

  60. Han, S.-S., Han, S., & Kamberos, N. L. (2014). Piperlongumine inhibits the proliferation and survival of B-cell acute lymphoblastic leukemia cell lines irrespective of glucocorticoid resistance. Biochemical and Biophysical Research Communications., 452(3), 669–675.

    Article  CAS  PubMed  Google Scholar 

  61. Allen, A., Gill, K., Hoehn, D., Sulis, M., Bhagat, G., & Alobeid, B. (2014). C-myc protein expression in B-cell acute lymphoblastic leukemia, prognostic significance? Leukemia Research., 38(9), 1061–1066.

    Article  CAS  PubMed  Google Scholar 

  62. Silveira, A. B., Laranjeira, A. B. A., Rodrigues, G. O. L., Leal, P. C., Cardoso, B. A., Barata, J. T., et al. (2015). PI3K inhibition synergizes with glucocorticoids but antagonizes with methotrexate in T-cell acute lymphoblastic leukemia. Oncotarget, 6(15), 13105.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Liu, R., Chen, Y., Liu, G., Li, C., Song, Y., Cao, Z., et al. (2020). PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death & Disease, 11, 797.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Behdokht Khani and Hussein Safin for helpful comments on the manuscript.

Funding

This work was supported by the Tehran University of Medical sciences.

Author information

Authors and Affiliations

Authors

Contributions

Design and data mining was done by SN and YA, supervision and revision by ZA and YA, and writing of the draft of the manuscript by SN, SF. All authors have read and approved the final version.

Corresponding authors

Correspondence to Yazdan Asgari or Zahra Azizi.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

This study was conducted in silico based on the analysis of data obtained from online databases and no laboratory studies were conducted on humans or animals.

Consent for Publication

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 5398 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nekoeian, S., Ferdowsian, S., Asgari, Y. et al. Identification of Hub Genes Associated with Resistance to Prednisolone in Acute Lymphoblastic Leukemia Based on Weighted Gene Co-expression Network Analysis. Mol Biotechnol 65, 1913–1922 (2023). https://doi.org/10.1007/s12033-023-00707-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00707-0

Keywords

Navigation