Skip to main content
Log in

A review of HPRT and its emerging role in cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Hypoxanthine guanine phosphoribosyltransferase (HPRT) is a common salvage housekeeping gene with a historically important role in cancer as a mutational biomarker. As an established and well-known human reporter gene for the evaluation of mutational frequency corresponding to cancer development, HPRT is most commonly used to evaluate cancer risk within individuals and determine potential carcinogens. In addition to its use as a reporter gene, HPRT also has important functionality in the body in relation to purine regulation as demonstrated by Lesch–Nyhan patients whose lack of functional HPRT leads to significant purine overproduction and further neural complications. This regulatory role, in addition to an established connection between other salvage enzymes and cancer development, points to HPRT as an emerging influence in cancer. Recent work has shown that not only is the enzyme upregulated within malignant tumors, it also has significant surface localization within some cancer cells. With this is mind, HPRT has the potential to become a significant biomarker not only for the characterization of cancer, but also for its potential treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Goodchild J. Conjugates of oligonucleotides and modified oligonucleotides: a review of their synthesis and properties. Bioconjug Chem. 1990;1(3):165–87.

    Article  Google Scholar 

  2. Kaziro Y, Itoh H, et al. Signal-transducing structure and function of GTP-binding proteins. Ann Rev Biochem 1991;60(1):349–400.

    Article  Google Scholar 

  3. Schneider E, Hunke S. ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. FEMS Microbiol Rev 1998;22(1):1–20.

    Article  Google Scholar 

  4. Rajagopal L, Vo A, Silvestroni A, Rubens CE. Regulation of purine biosynthesis by a eukaryotic-type kinase in Streptococcus agalactiae. Mol Microbiol. 2005;56:1329–46. https://doi.org/10.1111/j.1365-2958.2005.04620.x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Lane AN, Fan TW. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res. 2015. https://doi.org/10.1093/nar/gkv047.

    Article  PubMed Central  PubMed  Google Scholar 

  6. LeLeiko NS, Bronstein AD, Baliga BS, Munro HN. De novo purine nucleotide synthesis in the rat small and large intestine: effect of dietary protein and purines. J Pediatr Gastroenterol Nutr. 1983;2(2):313–9.

    Article  PubMed  CAS  Google Scholar 

  7. Gross A, Lewis JM, George M. Practical synthesis of 5-phospho-D-ribosyl. alpha.-1-pyrophosphate (PRPP): enzymatic routes from ribose 5-phosphate or ribose. J Am Chem Soc. 1983;105(25):7428–35.

    Article  Google Scholar 

  8. Tong X, Zhao F, Thompson CB. The molecular determinants of de novo nucleotide biosynthesis in cancer cells. Curr Opin Genet Dev. 2009. https://doi.org/10.1016/j.gde.2009.01.002.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Becerra A, Lazcano A. The role of gene duplication in the evolution of purine nucleotide salvage pathways. Orig Life Evol Biosph. 1998;28(4–6):539–53.

    Google Scholar 

  10. Stout JT, Caskey CT. Hprt: gene structure, expression, and mutation. Ann Rev Genet. 1985;19(1):127–48

    Article  Google Scholar 

  11. Caskey CT, Kruh GD. (1979) The HPRT locus review. Cell 1979;16(1):1–9.

  12. Wilson JM, Tarr GE, Kelley WN. Human hypoxanthine (guanine) phosphoribosyltransferase: an amino acid substitution in a mutant form of the enzyme isolated from a patient with gout. Proc Natl Acad Sci USA. 1983;80:870–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Eads JC, Xu Y, Grubmeyer C. The crystal structure with bound GMP of human phosphoribosyltransferase. Cell 1994;78:325–34.

    Article  PubMed  CAS  Google Scholar 

  14. Keough DT, Brereton IM, De Jersey J, Guddat LW. The crystal structure of free human hypoxanthine-guanine phosphoribosyltransferase reveals extensive conformational plasticity throughout the catalytic cycle. J Mol Biol. 2005;351:170–81. https://doi.org/10.1016/j.jmb.2005.05.061.

    Article  PubMed  CAS  Google Scholar 

  15. Zhang N, Gong X, Lu M, et al. Crystal structures of Apo and GMP bound hypoxanthine—guanine phosphoribosyltransferase from Legionella pneumophila and the implications in gouty arthritis. J Struct Biol. 2016. https://doi.org/10.1016/j.jsb.2016.03.007.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fuscoe JC, Fenwick IRG, Ledbetter IDH, Caskey CT. Deletion and amplification of the HGPRT locus in Chinese hamster cells. Mol Cell Biol 1983;3:1086–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wilson JM, Tarrt GE, Kelley WN. Human hypoxanthine (guanine) phosphoribosyltransferase: an amino acid substitution in a mutant form of the enzyme isolated from a patient with gout. Proc Natl Acad Sci USA. 1983;80:870–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kim SH, Moores JC, David D, et al. The organization of the human HPRT gene. Nucleic Acids Res. 1986;14:3103–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Melton DW, Mcewan C, Reid AM, Mckie B. Expression of the mouse HPRT gene: deletional analysis of the promoter region of an X-chromosome linked housekeeping gene. Cell 1986;44:319–28.

    Article  PubMed  CAS  Google Scholar 

  20. Caskey CT. In vitro translation of hypoxanthine/guanine phosphoribosyltransferase mRNA: characterization of a mouse neuroblastoma cell line that has elevated levels of hypoxanthine/guanine phosphoribosyltransferase protein. Proc Natl Acad Sci USA. 1981;78:6977–80.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zoref-Shani E, Frishberg Y, Bromberg Y. Kelley-Seegmiller syndrome due to a unique variant of hypoxanthine-guanine phosphoribosyltransferase: reduced affinity for 5-phosphoribosyl-1-pyrophosphate manifested only at low, physiological substrate concentrations. BBA Mol Basis Dis. 2000;1500:197–203.

    Article  CAS  Google Scholar 

  22. Nyhan WL, Diego S. (2012) Lesch–Nyhan syndrome. Wiley, Chichester, pp. 1–6. https://doi.org/10.1002/9780470015902.a0001457.pub2.

    Book  Google Scholar 

  23. Kostalova E, Pavelka K, Vlaskova H, et al. Hyperuricemia and gout due to deficiency of hypoxanthine—guanine phosphoribosyltransferase in female carriers: new insight to differential diagnosis.. Clin Chim Acta. 2015;447:121. https://doi.org/10.1016/j.cca.2015.04.018.

    Article  CAS  Google Scholar 

  24. Miller AD, Jollyt DJ, Friedmannt T, Verma IM. A transmissible retrovirus expressing human hypoxanthine phosphoribosyltransferase (HPRT): gene transfer into cells obtained from humans deficient in HPRT Proc Natl Acad Sci USA. 1983;80:4709–13..

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Rcas JOMA, Uño ANSB, Eill PAON. The spectrum of hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency clinical experience based on 22 patients from 18 Spanish families. Medicine 2001;80:102–12.

    Article  Google Scholar 

  26. Seegmiller JE, Rosenbloom FM, Kelley WN. Enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis. Science 2016;155:1682–4.

    Article  Google Scholar 

  27. Torres RJ, Puig JG. Hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome. Orphanet J Rare Dis 2007;10:1–10. https://doi.org/10.1186/1750-1172-2-48.

    Article  Google Scholar 

  28. Wilson JM, Stout JT, Palella TD, Davidson BL, Kelley WN, Caskey CT. A molecular survey of hypoxanthine-guanine phosphoribosyltransferase deficiency in man. J Clin Invest. 1986;77(1):188–95

    Article  Google Scholar 

  29. Jagarlamudi KK, Hansson LO, Eriksson S. Breast and prostate cancer patients differ significantly in their serum Thymidine kinase 1 (TK1) specific activities compared with those hematological malignancies and blood donors: implications of using serum TK1 as a biomarker. BMC Cancer. 2015. https://doi.org/10.1186/s12885-015-1073-8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Alegre MM, Grose J. Thymidine kinase 1: diagnostic and prognostic significance in malignancy, Doctoral dissertation, Brigham Young University, Provo; 2013.

  31. Aufderklamm S, Todenhöfer T, Gakis G, et al. Thymidine kinase and cancer monitoring. Cancer Lett. 2012;316:6–10. https://doi.org/10.1016/j.canlet.2011.10.025.

    Article  PubMed  CAS  Google Scholar 

  32. Li HX, Lei DS, Wang XQ, et al. Serum thymidine kinase 1 is a prognostic and monitoring factor in patients with non-small cell lung cancer. Oncol Rep. 2005;13:145–9..

    PubMed  CAS  Google Scholar 

  33. O’Neill KL, Zhang F, Li H, et al. Thymidine kinase 1—a prognostic and diagnostic indicator in ALL and AML patients. Leukemia 2007;21:560–3. https://doi.org/10.1038/sj.leu.2404536.

    Article  PubMed  CAS  Google Scholar 

  34. He Q, Zou L, Zhang PA, et al. The clinical significance of thymidine kinase 1 measurement in serum of breast cancer patients using anti-TK1 antibody. Int J Biol Mark. 2000;15:139–46.

    Article  CAS  Google Scholar 

  35. Nisman B, Allweis T, Kadouri L, et al. Comparison of diagnostic and prognostic performance of two assays measuring thymidine kinase 1 activity in serum of breast cancer patients. Clin Chem Lab Med. 2013;51:439–47. https://doi.org/10.1515/cclm-2012-0162

    Article  PubMed  CAS  Google Scholar 

  36. Carlsson L, Larsson A, Lindman H. Elevated levels of thymidine kinase 1 peptide in serum from patients with breast cancer. Ups J Med Sci. 2009;114:116–20. https://doi.org/10.1080/03009730802688835.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bolayirli M, Papila C, Korkmaz GG, et al. Serum thymidine kinase 1 activity in solid tumor (breast and colorectal cancer) patients treated with adjuvant chemotherapy. J Clin Lab Anal. 2013;226:220–6. https://doi.org/10.1002/jcla.21587.

    Article  CAS  Google Scholar 

  38. Alegre MM, Weyant MJ, Bennett DT, et al. Serum detection of thymidine kinase 1 as a means of early detection of lung cancer. Anticancer Res. 2014;34:2145–52.

    PubMed  Google Scholar 

  39. Zhang F, Li H, Pendleton AR, et al. Thymidine kinase 1 immunoassay: a potential marker for breast cancer. Cancer Detect Prev. 2001;25:8–15.

    PubMed  CAS  Google Scholar 

  40. He E, Xu XH, Guan H, et al. Thymidine kinase 1 is a potential marker for prognosis and monitoring the response to treatment of patients with breast, lung, and esophageal cancer and non-Hodgkin’s lymphoma. Nucleosides Nucleotides Nucleic Acids. 2010;29:352–8. https://doi.org/10.1080/15257771003738535.

    Article  PubMed  CAS  Google Scholar 

  41. Chang Y-J, Tseng C-Y, Lin P-Y, et al. Acute exposure to DEHP metabolite, MEHP cause genotoxicity, mutagenesis and carcinogenicity in mammalian Chinese hamster ovary cells. Carcinogenesis 2017;38:336–45. https://doi.org/10.1093/carcin/bgx009.

    Article  PubMed  CAS  Google Scholar 

  42. Gobrecht J, McDyre C, Comotto J, Reynolds M. Induction of cytotoxic and genotoxic damage following exposure of V79 cells to cadmium chloride. Mutat Res Toxicol Environ Mutagen. 2017;816–817:12–7. https://doi.org/10.1016/j.mrgentox.2017.03.001.

    Article  CAS  Google Scholar 

  43. Grist S, McCarron M, Kutlaca A, et al. In vivo human somatic mutation: frequency and spectrum with age. Mutat Res. 1992;266:189–96. https://doi.org/10.1016/0027-5107(92)90186-6.

    Article  PubMed  CAS  Google Scholar 

  44. Hirota H, Kubota M, Hashimoto H, et al. Analysis of hprt gene mutation following anti-cancer treatment in pediatric patients with acute leukemia. Mutat Res Toxicol. 1993;319:113–20.

    Article  CAS  Google Scholar 

  45. Robinson DR, Albertini RJ, Neill O, Finette B, Sala-trepat M, Moustacchi E, et al. An analysis of in vivo hprt mutant frequency in circulating T-lymphocytes in the normal human population: a comparison of four datasets. Mutat Res. 1994;313:227–47.

    Article  PubMed  CAS  Google Scholar 

  46. Strauss GH, Albertini RJ. Enumeration of 6-thioguanine-resistant peripheral blood lymphocytes in man as a potential test for somatic cell mutations arising in vivo. Mutat Res Mol Mech Mutagen. 1979;61:353–79. https://doi.org/10.1016/0027-5107(79)90140-4.

    Article  CAS  Google Scholar 

  47. Albertini RJ, Castle KL, Borcherding WR. T-cell cloning to detect the mutant 6-thioguanine-resistant lymphocytes present in human peripheral blood. Proc Natl Acad Sci USA. 1982;79:6617–21. https://doi.org/10.1073/pnas.79.21.6617.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Compton PJE, Hooper K, Smith MT. Human somatic mutation assays as biomarkers of carcinogenesis. Environ Health Perspect. 1991;94:135–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Albertini RJ. HPRT mutations in humans: biomarkers for mechanistic studies. Mutat Res Rev Mutat Res. 2001;489:1–16.

    Article  CAS  Google Scholar 

  50. Hou S, Yang K, Nyberg F, et al. Hprt mutant frequency and aromatic DNA adduct level in non-smoking and smoking lung cancer patients and population controls. Carcinogenesis 1999;20:437–44.

    Article  PubMed  CAS  Google Scholar 

  51. Branda RF, Sullivan LM, O’neill JP, Falta MT, Nicklas JA, Hirsch B, Vacek PM, Albertini RJ, Vacek PM, Albertini RJ. Measurement of HPRT mutant frequencies in T-lymphocytes from healthy human populations. 1993;285:267–79.

  52. Sawada M, Kubota M, Lin YW, Watanabe K, Koishi S, Usami I, et al. Prospective study of mutant frequencies at the hprt and T-cell receptor gene loci in pediatric cancer patients during chemotherapy. Cancer Epidemiol Biomarkers. 1998;7:711–7.

    CAS  Google Scholar 

  53. Sawada M, Kubota M, Lin Y, Watanabe K. Evaluation of mutant frequencies at the hprt and the T-cell receptor loci in pediatric cancer patients before treatment. Mutat Res Fundam Mol Mech Mutag 1998;397(2):337–43.

    Article  Google Scholar 

  54. Branda RF, O’Neill JP, Jacobson-Kram D, Albertini RJ. Factors influencing mutation at the hprt locus in T-lymphocytes: studies in normal women and women with benign and malignant breast masses. Environ Mol Mutagen. 1992;19:274–81.

    Article  PubMed  CAS  Google Scholar 

  55. Cheng T, Christiani DC, Liber HL, Wain JC, Xu X, Wiencke JK, et al. Mutant frequency at the hprt locus in human lymphocytes in a case-control study of lung cancer. Mutat Res Mol Mech Mutag. 1995;332:109–18.

    Google Scholar 

  56. Duthie SJ, Collins R. (1995) The influence of smoking and diet on the hypoxanthine phosphoribosyltransferase mutant frequency in circulating T lymphocytes from a normal human population. Mutat Res Mol Mech Mutag. 1995;331:55–64.

  57. Hakoda M, Akiyama M, Kyoizumi S, Awa AA. Increased somatic cell mutant frequency in atomic bomb survivors. Mutat Res Mol Mech Mutag. 1988;201:39–48.

    Article  CAS  Google Scholar 

  58. Tates AD, Van Dam FJ, Natarajan AT, Zwinderman AH, Osanto S. Frequencies of HPRT mutants and micronuclei in lymphocytes of cancer patients under chemotherapy: a prospective study. Mutat Res. 1994;307:293–306.

    Article  PubMed  CAS  Google Scholar 

  59. Glaab WE, Tindall KR. Mutation rate at the hprt locus in human cancer cell lines with specific mismatch repair-gene defects. Carcinogenesis 1997;18:1–8.

    Article  PubMed  CAS  Google Scholar 

  60. Homey B, Soto H, Ge N, Catron D, Buchanan ME, Mcclanahan T, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001;410:50–6.

    Article  PubMed  Google Scholar 

  61. Townsend MH, Felsted AM, Ence ZE, Piccolo SR, Robison RA, O’Neill KL. Elevated expression of hypoxanthine guanine phosphoribosyltransferase within malignant tissue. Cancer Clin Oncol. 2017;6:19.

    Article  Google Scholar 

  62. Townsend MH, Anderson MD, Weagel EG, Velazquez EJ, Weber KS, Robison RA, et al. Non-small-cell lung cancer cell lines A549 and NCI-H460 express hypoxanthine guanine phosphoribosyltransferase on the plasma membrane. Onco Targets Ther. 2017;10:1921–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim L. O’Neill.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Research involving human and animal participants

This article does not contain any studies with animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Townsend, M.H., Robison, R.A. & O’Neill, K.L. A review of HPRT and its emerging role in cancer. Med Oncol 35, 89 (2018). https://doi.org/10.1007/s12032-018-1144-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-018-1144-1

Keywords

Navigation