Skip to main content

Advertisement

Log in

TIAM1 Upregulation Confers NVP-BEZ235 Resistance to Breast Cancer Cells Through FGFR/STAT3 Pathway

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Breast cancer is the most common cancer in women worldwide, and advanced breast cancer is the leading cause of cancer death in women. In present study, we aim to investigate that role of T-cell lymphoma invasion and metastasis-inducing protein1 (TIAM1) on NVP-BEZ235 resistance to breast cancer MCF7 and MDA-MB-361 cells. Briefly, MCF7 and MDA-MB-361 cells were treated with NVP-BEZ235 and the relative expressions of TIAM1 at both mRNA level and protein level were determined by RT-PCR and western blot. In addition, MCF7 and MDA-MB-361 cells were transfected with TIAM1 knockdown or overexpression vector. Then the IC50 of NVP-BEZ235 on MCF7 and MDA-MB-361 cells were detected by MTT assay. Finally, FGFR/STAT3 pathway protein members were investigated by western blot. Consequently, we found that the mRNA and protein expressions of TIAM1 and FGFR1/3 were dramatically upregulated in NVP-BEZ235-treated group in both MCF7 and MDA-MB-361 cells. Interestingly, TIAM1 knockdown via shRNA decreased the IC50 of NVP-BEZ235 of breast cancer cells, while TIAM1 overexpression increased the IC50 of NVP-BEZ235 of breast cancer cells, which suggested that TIAM1 was one of the contributors for NVP-BEZ235 resistance. In addition, FGFR members including FGFR1/3 showed similar results to TIAM1. Importantly, FGFR inhibitor AZD4547 decreased the IC50 of NVP-BEZ235, which suggested that FGFR downregulation reduced the NVP-BEZ235 resistance to breast cancer cells. In summary, our present study revealed that TIAM1 conferred NVP-BEZ235 resistance to breast cancer cells via activating FGFR/STAT3 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Acquaviva J, Smith DL, Sang J, Friedland JC, He S, Sequeira M, Zhang C, Wada Y, Proia DA (2012) Targeting KRAS-mutant non–small cell lung cancer with the Hsp90 inhibitor ganetespib. Mol Cancer Ther 11(12):2633–2643

    Article  CAS  Google Scholar 

  • Bohrer LR, Chuntova P, Bade LK, Beadnell TC, Leon RP, Brady NJ, Ryu Y, Goldberg JE, Schmechel SC, Koopmeiners JS et al (2014) Activation of the FGFR-STAT3 pathway in breast cancer cells induces a hyaluronan-rich microenvironment that licenses tumor formation. Can Res 74(1):374–386. https://doi.org/10.1158/0008-5472.CAN-13-2469

    Article  CAS  Google Scholar 

  • Brachmann SM, Hofmann I, Schnell C, Fritsch C, Wee S, Lane H, Wang S, Garcia-Echeverria C, Maira S-M (2009b) Specific apoptosis induction by the dual PI3K/mTor inhibitor NVP-BEZ235 in HER2 amplified and PIK3CA mutant breast cancer cells. Proc Natl Acad Sci USA 106(52):22299–22304. https://doi.org/10.1073/pnas.0905152106

    Article  PubMed  Google Scholar 

  • Brachmann SM, Hofmann I, Schnell C, Fritsch C, Wee S, Lane H, Wang S, Garcia-Echeverria C, Maira S-M (2009a) Specific apoptosis induction by the dual PI3K/mTor inhibitor NVP-BEZ235 in HER2 amplified and PIK3CA mutant breast cancer cells. Proc Natl Acad Sci USA 106(52):22299–22304

    Article  CAS  Google Scholar 

  • Carpenter RL, Lo HW (2014) STAT3 target genes relevant to human cancers. Cancers (Basel) 6(2):897–925. https://doi.org/10.3390/cancers6020897

    Article  CAS  Google Scholar 

  • Check JH, Rosenberg A, Check DL, DiAntonio A, Rui H, Cohen R, DiAntonio G (2017) Serum levels of the immunomodulatory protein, the progesterone induced blocking factor (PIBF) which is found in high levels during pregnancy is not higher in women with progesterone (P) receptor (R) positive vs. negative breast cancer. Clin Exp Obstet Gynecol 44(2):187–189

    CAS  PubMed  Google Scholar 

  • Chmaj-Wierzchowska K, Jurczyk MU, Czech-Szczapa B, Wilczak M (2017) The knowledge of risk factors and prevention of breast cancer in Polish women. Eur J Gynaecol Oncol 38(3):387–390

    CAS  PubMed  Google Scholar 

  • Formisano L, Lu Y, Servetto A, Hanker AB, Jansen VM, Bauer JA, Sudhan DR, Guerrero-Zotano AL, Croessmann S, Guo Y et al (2019) Aberrant FGFR signaling mediates resistance to CDK4/6 inhibitors in ER+ breast cancer. Nat Commun 10(1):1373–1373. https://doi.org/10.1038/s41467-019-09068-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton R (2009) Genetics: breast cancer as an exemplar. Nurs Clin 44(3):327–338

    Google Scholar 

  • Ilic N, Utermark T, Widlund HR, Roberts TM (2011) PI3K-targeted therapy can be evaded by gene amplification along the MYC-eukaryotic translation initiation factor 4E (eIF4E) axis. Proc Natl Acad Sci USA 108(37):E699–E708

    Article  CAS  Google Scholar 

  • Izumi D, Toden S, Ureta E, Ishimoto T, Baba H, Goel A (2019) TIAM1 promotes chemoresistance and tumor invasiveness in colorectal cancer. Cell Death Dis 10(4):267–267. https://doi.org/10.1038/s41419-019-1493-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji Y, Di W, Yang Q, Lu Z, Cai W, Wu J (2015) Inhibition of autophagy increases proliferation inhibition and apoptosis induced by the PI3K/mTOR inhibitor NVP-BEZ235 in breast cancer cells. Clin Lab 61(8):1043–1051. https://doi.org/10.7754/clin.lab.2015.150144

    Article  CAS  PubMed  Google Scholar 

  • Klempner SJ, Myers AP, Cantley LC (2013) What a tangled web we weave: emerging resistance mechanisms to inhibition of the phosphoinositide 3-kinase pathway. Cancer Discov 3(12):1345–1354

    Article  CAS  Google Scholar 

  • Kuger S, Cörek E, Polat B, Kämmerer U, Flentje M, Djuzenova CS (2014) Novel PI3K and mTOR inhibitor NVP-BEZ235 radiosensitizes breast cancer cell lines under normoxic and hypoxic conditions. Breast Cancer 8:39–49. https://doi.org/10.4137/BCBCR.S13693

    Article  CAS  PubMed  Google Scholar 

  • Lai-Tiong F, Van-Hulst S (2018) Complete response after docetaxel plus pertuzumab plus trastuzumab chemotherapy for multimetastatic positive Her-2 breast cancer. Eur J Gynaecol Oncol 39(4):662–664

    Google Scholar 

  • Leung E, Kim JE, Rewcastle GW, Finlay GJ, Baguley BC (2011) Comparison of the effects of the PI3K/mTOR inhibitors NVP-BEZ235 and GSK2126458 on tamoxifen-resistant breast cancer cells. Cancer Biol Ther 11(11):938–946. https://doi.org/10.4161/cbt.11.11.15527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Liu Q, Piao J, Hua F, Wang J, Jin G, Lin Z, Zhang Y (2016) Clinicopathological implications of Tiam1 overexpression in invasive ductal carcinoma of the breast. BMC Cancer 16(1):681–681. https://doi.org/10.1186/s12885-016-2724-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills JN, Rutkovsky AC, Giordano A (2018) Mechanisms of resistance in estrogen receptor positive breast cancer: overcoming resistance to tamoxifen/aromatase inhibitors. Curr Opin Pharmacol 41:59–65. https://doi.org/10.1016/j.coph.2018.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison Joly M, Williams MM, Hicks DJ, Jones B, Sanchez V, Young CD, Sarbassov DD, Muller WJ, Brantley-Sieders D, Cook RS (2017) Two distinct mTORC2-dependent pathways converge on Rac1 to drive breast cancer metastasis. Breast Cancer Res 19(1):74–74. https://doi.org/10.1186/s13058-017-0868-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onitilo AA, Engel JM, Greenlee RT, Mukesh BN (2009) Breast cancer subtypes based on ER/PR and Her2 expression: comparison of clinicopathologic features and survival. Clin Med Res 7(1–2):4–13. https://doi.org/10.3121/cmr.2009.825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan C, Schoppe O, Parra-Damas A, Cai R, Todorov MI, Gondi G, von Neubeck B, Böğürcü-Seidel N, Seidel S, Sleiman K et al (2019) Deep learning reveals cancer metastasis and therapeutic antibody targeting in the entire body. Cell 179(7):1661–1676.e1619. https://doi.org/10.1016/j.cell.2019.11.013

    Article  CAS  PubMed  Google Scholar 

  • Prado A, Andrades P, Parada F (2010) Recent developments in the ability to predict and modify breast cancer risk. J Plast Reconstr Aesth Surg 63(10):1581–1587

    Article  Google Scholar 

  • Serra V, Eichhorn PJA, García-García C, Ibrahim YH, Prudkin L, Sánchez G, Rodríguez O, Antón P, Parra J-L, Marlow S (2013) RSK3/4 mediate resistance to PI3K pathway inhibitors in breast cancer. J Clin Investig 123(6):2551–2563

    Article  CAS  Google Scholar 

  • Sun S, Zhang Y, Zheng J, Duan B, Cui J, Chen Y, Deng W, Ye B, Liu L, Chen Y et al (2018) HDAC6 inhibitor TST strengthens the antiproliferative effects of PI3K/mTOR inhibitor BEZ235 in breast cancer cells via suppressing RTK activation. Cell Death Dis 9(9):929–929. https://doi.org/10.1038/s41419-018-0931-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S-L, Hancock WS, Goodrich GG, Kunitake ST (2003) An approach to the proteomic analysis of a breast cancer cell line (SKBR-3). Proteomics 3(6):1037–1046. https://doi.org/10.1002/pmic.200300382

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Tian X, Oh SY, Movassaghi M, Naber SP, Kuperwasser C, Buchsbaum RJ (2016) The fibroblast Tiam1-osteopontin pathway modulates breast cancer invasion and metastasis. Breast Cancer Res 18(1):14–14. https://doi.org/10.1186/s13058-016-0674-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zervoudis S, Iatrakis G, Bothou A, Peitsidis P, Fotopoulos S, Navrozoglou I, Pasxopoulos M, Stefos T (2018) Clinical feasibility of a new oncoplastic technique for breast lumps of the external quadrants: half moon lateral crescent technique. Clin Exp Obstet Gynecol 45(3):347–352

    Google Scholar 

  • Zhao Y, Wang Z, Jiang Y, Yang C (2011) Inactivation of Rac1 reduces Trastuzumab resistance in PTEN deficient and insulin-like growth factor I receptor overexpressing human breast cancer SKBR3 cells. Cancer Lett 313(1):54–63. https://doi.org/10.1016/j.canlet.2011.08.023

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

JJQ and JY conceived and designed the experiments, ML and NL analyzed and interpreted the results of the experiments, LZX and GNH performed the experiments.

Corresponding author

Correspondence to Jing Yu.

Ethics declarations

Conflict of interests

The authors state that there are no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, J., Li, M., Li, N. et al. TIAM1 Upregulation Confers NVP-BEZ235 Resistance to Breast Cancer Cells Through FGFR/STAT3 Pathway. Biochem Genet 58, 953–965 (2020). https://doi.org/10.1007/s10528-020-09982-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-020-09982-x

Keywords

Navigation