Skip to main content
Log in

Further Characterization of MUAS35SCP and FUAS35SCP Recombinant Promoters and Their Implication in Translational Research

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Recombinant promoters are of high value in translational research. Earlier, we developed two recombinant promoters, namely MUAS35SCP and FUAS35SCP, and their transcriptional activities were found to be stronger than that of the most widely used CaMV35S promoter in dicot plants. Presently, we are reporting constitutive expression of both GUS and GFP reporters under the control of these promoters in several monocots, including rice, wheat, and pearl millet. We observed that these promoters could express the reporter genes constitutively, and their expression abilities were almost equal to that of the CaMV35S2 promoter. Plant-derived enriched PaDef (Persea americana var. drymifolia defensin) and NsDef2 (Nigella sativa L. defensin 2) antimicrobial peptides expressed under the control of these promoters arrest the growth of devastating phytopathogens like Pseudomonas syringae, Rhodococcus fascians, and Alternaria alternata. We observed that plant-derived NsDef2 and PaDef under control of these promoters showed approximately 80–90% inhibitory activity against Pseudomonas syringae. Hence, these promoters were constitutive and universal, as they can drive the expression of transgenes in both dicot and monocot plants. Alongside, these promoters could become a valuable tool for raising genetically modified plants with in-built resistance toward phytopathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cai, Y.-M., Kallam, K., Tidd, H., Gendarini, G., Salzman, A., & Patron, N. J. (2020). Rational design of minimal synthetic promoters for plants. Nucleic Acids Research, 48(21), 11845–11856. https://doi.org/10.1093/nar/gkaa682

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Sethi, L., Kumari, K., & Dey, N. (2021). Engineering of plants for efficient production of therapeutics. Molecular Biotechnology. https://doi.org/10.1007/s12033-021-00381-0

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sethi, L., Deb, D., Khadanga, B., & Dey, N. (2021). Synthetic promoters from blueberry red ringspot virus (BRRV). Planta, 253(6), 121. https://doi.org/10.1007/s00425-021-03624-1

    Article  PubMed  CAS  Google Scholar 

  4. Kumar, D., Patro, S., Ranjan, R., Sahoo, D. K., Maiti, I. B., & Dey, N. (2011). Development of useful recombinant promoter and its expression analysis in different plant cells using confocal laser scanning microscopy. PLoS ONE, 6(9), e24627–e24627. https://doi.org/10.1371/journal.pone.0024627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Ranjan, R., Patro, S., Kumari, S., Kumar, D., Dey, N., & Maiti, I. B. (2011). Efficient chimeric promoters derived from full-length and sub-genomic transcript promoters of Figwort mosaic virus (FMV). Journal of Biotechnology, 152(1), 58–62. https://doi.org/10.1016/j.jbiotec.2011.01.015

    Article  PubMed  CAS  Google Scholar 

  6. Patro, S., Maiti, I. B., & Dey, N. (2013). Development of an efficient bi-directional promoter with tripartite enhancer employing three viral promoters. Journal of Biotechnology, 163(3), 311–317. https://doi.org/10.1016/j.jbiotec.2012.11.009

    Article  PubMed  CAS  Google Scholar 

  7. Acharya, S., Ranjan, R., Pattanaik, S., Maiti, I. B., & Dey, N. (2014). Efficient chimeric plant promoters derived from plant infecting viral promoter sequences. Planta, 239(2), 381–396. https://doi.org/10.1007/s00425-013-1973-2

    Article  PubMed  CAS  Google Scholar 

  8. Deb, D., Shrestha, A., Maiti, I. B., & Dey, N. (2018). Recombinant Promoter (MUASCsV8CP) Driven Totiviral Killer Protein 4 (KP4) imparts resistance against fungal pathogens in transgenic tobacco. Frontiers in Plant Science, 9, 278. https://doi.org/10.3389/fpls.2018.00278

    Article  PubMed  PubMed Central  Google Scholar 

  9. Khan, A., Shrestha, A., Bhuyan, K., Maiti, I. B., & Dey, N. (2018). Structural characterization of a novel full-length transcript promoter from Horseradish Latent Virus (HRLV) and its transcriptional regulation by multiple stress responsive transcription factors. Plant Molecular Biology, 96(1), 179–196. https://doi.org/10.1007/s11103-017-0693-6

    Article  PubMed  CAS  Google Scholar 

  10. Deb, D., & Dey, N. (2019). Synthetic Salicylic acid inducible recombinant promoter for translational research. Journal of Biotechnology, 297, 9–18. https://doi.org/10.1016/j.jbiotec.2019.03.004

    Article  PubMed  CAS  Google Scholar 

  11. Khadanga, B., Chanwala, J., Sandeep, I. S., & Dey, N. (2021). Synthetic promoters from strawberry vein banding virus (SVBV) and Dahlia Mosaic Virus (DaMV). Molecular Biotechnology, 63(9), 792–806. https://doi.org/10.1007/s12033-021-00344-5

    Article  PubMed  CAS  Google Scholar 

  12. Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., & Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic acids research, 30(1), 325–327. https://doi.org/10.1093/nar/30.1.325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Higo, K., Ugawa, Y., Iwamoto, M., & Higo, H. (1998). PLACE: A database of plant cis -acting regulatory DNA elements. Nucleic Acids Research, 26(1), 358–359. https://doi.org/10.1093/nar/26.1.358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wingender, E., Dietze, P., Karas, H., & Knüppel, R. (1996). TRANSFAC: A database on transcription factors and their DNA binding sites. Nucleic acids research, 24(1), 238–241. https://doi.org/10.1093/nar/24.1.238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Gupta, D., Dey, N., Leelavathi, S., & Ranjan, R. (2021). Development of efficient synthetic promoters derived from pararetrovirus suitable for translational research. Planta, 253(2), 1–15. https://doi.org/10.1007/s00425-021-03565-9

    Article  CAS  Google Scholar 

  16. Martins, P. M. M., Merfa, M. V., Takita, M. A., & De Souza, A. A. (2018). Persistence in phytopathogenic bacteria: do we know enough? Frontiers in Microbiology, 9, 1099. https://doi.org/10.3389/fmicb.2018.01099

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gassmann, A. J., & Hutchison, W. D. (2012). Bt crops and insect pests. GM Crops & Food, 3(3), 139. https://doi.org/10.4161/gmcr.21778

    Article  Google Scholar 

  18. Drenth, A., & Guest, D. I. (2016). Fungal and oomycete diseases of tropical tree fruit crops. Annual Review of Phytopathology, 54(1), 373–395. https://doi.org/10.1146/annurev-phyto-080615-095944

    Article  PubMed  CAS  Google Scholar 

  19. Buda De Cesare, G., Cristy, S. A., Garsin, D. A., & Lorenz, M. C. (2020). Antimicrobial peptides: a new frontier in antifungal therapy. MBio, 11(6), e02123-e2220. https://doi.org/10.1128/mBio.02123-20

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature, 415(6870), 389–395. https://doi.org/10.1038/415389a

    Article  PubMed  CAS  Google Scholar 

  21. Patro, S., Kumar, D., Ranjan, R., Maiti, I. B., & Dey, N. (2012). The development of efficient plant promoters for transgene expression employing plant virus promoters. Molecular Plant, 5(4), 941–944. https://doi.org/10.1093/mp/sss028

    Article  PubMed  CAS  Google Scholar 

  22. Odell, J. T., Nagy, F., & Chua, N.-H. (1985). Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature, 313(6005), 810–812. https://doi.org/10.1038/313810a0

    Article  PubMed  CAS  Google Scholar 

  23. Dey, N., & Maiti, I. B. (1999). Structure and promoter/leader deletion analysis of mirabilis mosaic virus (MMV) full-length transcript promoter in transgenic plants. Plant Molecular Biology, 40(5), 771–782. https://doi.org/10.1023/A:1006285426523

    Article  PubMed  CAS  Google Scholar 

  24. Maiti, I. B., Gowda, S., Kiernan, J., Ghosh, S. K., & Shepherd, R. J. (1997). Promoter/leader deletion analysis and plant expression vectors with the figwort mosaic virus (FMV) full length transcript (FLt) promoter containing single or double enhancer domains. Transgenic Research, 6(2), 143–156. https://doi.org/10.1023/A:1018477705019

    Article  PubMed  CAS  Google Scholar 

  25. Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: Beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO journal, 6(13), 3901–3907.

    Article  CAS  Google Scholar 

  26. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1006/abio.1976.9999

    Article  PubMed  CAS  Google Scholar 

  27. Chen, H., Nelson, R. S., & Sherwood, J. L. (1994). Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. BioTechniques, 16(4), 664–668.

    PubMed  CAS  Google Scholar 

  28. Song, G., & Yamaguchi, K. (2003). Efficient agroinfiltration-mediated transient GU expression system for assaying different promoters in rice. Plant Biotechnology, 20(3), 235–239. https://doi.org/10.1155/2013/986273

    Article  CAS  Google Scholar 

  29. Ma, L., Lukasik, E., Gawehns, F., & Takken, F. L. W. (2012). The use of agroinfiltration for transient expression of plant resistance and fungal effector proteins in Nicotiana benthamiana leaves. Methods in Molecular Biology, 835, 61–74. https://doi.org/10.1007/978-1-61779-501-5_4

    Article  PubMed  CAS  Google Scholar 

  30. Kroumova, A. B. M., Sahoo, D. K., Raha, S., Goodin, M., Maiti, I. B., & Wagner, G. J. (2013). Expression of an apoplast-directed, T-phylloplanin-GFP fusion gene confers resistance against Peronospora tabacina disease in a susceptible tobacco. Plant Cell Reports, 32(11), 1771–1782. https://doi.org/10.1007/s00299-013-1490-6

    Article  PubMed  CAS  Google Scholar 

  31. Maiti, S., Patro, S., Purohit, S., Jain, S., Senapati, S., & Dey, N. (2014). Effective control of Salmonella infections by employing combinations of recombinant antimicrobial human β-defensins hBD-1 and hBD-2. Antimicrobial Agents and Chemotherapy, 58(11), 6896–6903. https://doi.org/10.1128/AAC.03628-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Sahoo, D. K., & Maiti, I. B. (2014). Biomass derived from transgenic tobacco expressing the Arabidopsis CESA3ixr1-2 gene exhibits improved saccharification. Acta Biologica Hungarica, 65(2), 189–204. https://doi.org/10.1556/ABiol.65.2014.2.7

    Article  PubMed  CAS  Google Scholar 

  33. Sahoo, D. K., Raha, S., Hall, J. T., & Maiti, I. B. (2014). Overexpression of the synthetic chimeric native-T-phylloplanin-GFP genes optimized for monocot and dicot plants renders enhanced resistance to blue mold disease in tobacco (N tabacum L.). The Scientific World Journal. https://doi.org/10.1155/2014/601314

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sahoo, D. K., Ranjan, R., Kumar, D., Kumar, A., Sahoo, B. S., Raha, S., Maiti, I. B., & Dey, N. (2009). An alternative method of promoter assessment by confocal laser scanning microscopy. Journal of Virological Methods, 161(1), 114–121. https://doi.org/10.1016/j.jviromet.2009.06.011

    Article  PubMed  CAS  Google Scholar 

  35. Pattanaik, S., Dey, N., Bhattacharyya, S., & Maiti, I. B. (2004). Isolation of full-lengthtranscript promoter from the Strawberry vein banding virus (SVBV) and expression analysis by protoplasts transient assays and in transgenic plants. Plant Science, 167(3), 427–438. https://doi.org/10.1016/j.plantsci.2004.04.011

    Article  CAS  Google Scholar 

  36. Maiti, I. B., & Shepherd, R. J. (1998). Isolation and expression analysis of peanut chlorotic streak caulimovirus (PClSV) full-length transcript (FLt) promoter in transgenic plants. Biochemical and Biophysical Research Communications, 244(2), 440–444. https://doi.org/10.1006/bbrc.1998.8287

    Article  PubMed  CAS  Google Scholar 

  37. Odell, J. T., Dudley, R. K., & Howell, S. H. (1981). Structure of the 19 S RNA transcript encoded by the cauliflower mosaic virus genome. Virology, 111(2), 377–385. https://doi.org/10.1016/0042-6822(81)90341-x

    Article  PubMed  CAS  Google Scholar 

  38. Dey, N., Sarkar, S., Acharya, S., & Maiti, I. B. (2015). Synthetic promoters in planta. Planta, 242(5), 1077–1094. https://doi.org/10.1007/s00425-015-2377-2

    Article  PubMed  CAS  Google Scholar 

  39. Omirulleh, S., Ábrahám, M., Golovkin, M., Stefanov, I., Karabev, M. K., Mustárdy, L., & Dudits, D. (1993). Activity of a chimeric promoter with the doubled CaMV 35S enhancer element in protoplast-derived cells and transgenic plants in maize. Plant Molecular Biology, 21(3), 415–428. https://doi.org/10.1007/BF00028800

    Article  PubMed  CAS  Google Scholar 

  40. Battraw, M. J., & Hall, T. C. (1990). Histochemical analysis of CaMV 35S promoter-β-glucuronidase gene expression in transgenic rice plants. Plant Molecular Biology, 15(4), 527–538. https://doi.org/10.1007/BF00017828

    Article  PubMed  CAS  Google Scholar 

  41. Zhou, J., Li, D., Zheng, C., Xu, R., Zheng, E., Yang, Y., Chen, Y., Yu, C., Yan, C., Chen, J., & Wang, X. (2020). Targeted transgene expression in rice using a callus strong promoter for selectable marker gene control. Frontiers in Plant Science, 11, 602680. https://doi.org/10.3389/fpls.2020.602680

    Article  PubMed  PubMed Central  Google Scholar 

  42. An, G., Costa, M. A., Mitra, A., Ha, S. B., & Márton, L. (1988). Organ-specific and developmental regulation of the nopaline synthase promoter in transgenic tobacco plants. Plant Physiology, 88(3), 547–552. https://doi.org/10.1104/pp.88.3.547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Wilkinson, J. E., Twell, D., & Lindsey, K. (1997). Activities of CaMV 35S and nos promoters in pollen: Implications for field release of transgenic plants. Journal of Experimental Botany, 48, 265–275. https://doi.org/10.1093/jxb/48.2.265

    Article  CAS  Google Scholar 

  44. Mardanova, E. S., Blokhina, E. A., Tsybalova, L. M., Peyret, H., Lomonossoff, G. P., & Ravin, N. V. (2017). Efficient transient expression of recombinant proteins in plants by the novel pEff vector based on the genome of potato virus X. Frontiers in Plant Science, 8, 247. https://doi.org/10.3389/fpls.2017.00247

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kapila, J., De Rycke, R., Van Montagu, M., & Angenon, G. (1997). An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Science, 122(1), 101–108. https://doi.org/10.1016/S0168-9452(96)04541-4

    Article  CAS  Google Scholar 

  46. Canto, T. (2016). Transient expression systems in plants: Potentialities and constraints. Advances in Experimental Medicine and Biology, 896, 287–301. https://doi.org/10.1007/978-3-319-27216-0_18

    Article  PubMed  CAS  Google Scholar 

  47. Deb, D., Shrestha, A., Sethi, L., Das, N. C., Rai, V., Das, A. B., & Dey, N. (2020). Transgenic tobacco expressing Medicago sativa Defensin (Msdef1) confers resistance to various phyto-pathogens. The Nucleus, 63(2), 179–190. https://doi.org/10.1007/s13237-020-00307-2

    Article  Google Scholar 

  48. Gao, A. G., Hakimi, S. M., Mittanck, C. A., Wu, Y., Woerner, B. M., Stark, D. M., & Rommens, C. M. T. (2000). Fungal pathogen protection in potato by expression of a plant defensin peptide. Nature Biotechnology, 18(12), 1307–1310. https://doi.org/10.1038/82436

    Article  PubMed  CAS  Google Scholar 

  49. Wroblewski, T., Tomczak, A., & Michelmore, R. (2005). Optimization of Agrobacterium- mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnology Journal, 3, 259–273. https://doi.org/10.1111/j.1467-7652.2005.00123.x

    Article  PubMed  CAS  Google Scholar 

  50. Meng, D.-M., Dai, H.-X., Gao, X.-F., Zhao, J.-F., Guo, Y.-J., Ling, X., & Fan, Z.-C. (2016). Expression, purification and initial characterization of a novel recombinant antimicrobial peptide Mytichitin-A in Pichia pastoris. Protein Expression and Purification, 127, 35–43. https://doi.org/10.1016/j.pep.2016.07.001

    Article  PubMed  CAS  Google Scholar 

  51. Sparkes, I. A., Runions, J., Kearns, A., & Hawes, C. (2006). Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protocols, 1, 2019–2025. https://doi.org/10.1038/nprot.2006.286

    Article  PubMed  CAS  Google Scholar 

  52. Rogozhin, E. A., Oshchepkova, Y. I., Odintsova, T. I., Khadeeva, N. V., Veshkurova, O. N., Egorov, T. A., Grishin, E. V., & Salikhov, S. I. (2011). Novel antifungal defensins from Nigella sativa L seeds. Plant Physiology and Biochemistry: PPB, 49(2), 131–137. https://doi.org/10.1016/j.plaphy.2010.10.008

    Article  PubMed  CAS  Google Scholar 

  53. Guzmán-Rodríguez, J. J., López-Gómez, R., Suárez-Rodríguez, L. M., Salgado-Garciglia, R., Rodríguez-Zapata, L. C., Ochoa-Zarzosa, A., & López-Meza, J. E. (2013). Antibacterial activity of defensin PaDef from avocado fruit (Persea americana var drymifolia) expressed in endothelial cells against Escherichia coli and Staphylococcus aureus. BioMed Research International. https://doi.org/10.1155/2013/986273

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research work was supported by grants from core funds of Institute of Life Sciences, Department of Biotechnology, and Government of India. We are grateful to the Director, Institute of Life Sciences, for his utmost support in this study. We are also very thankful to Ms. Premaspada Glory Lima for her kind technical help and support. We are grateful for financial support from the SERB-DST, Government of India (Project Number- CRG/2021/001001).

Author information

Authors and Affiliations

Authors

Contributions

ND planned and designed the experiments. LS, TS and KK performed the experiments. LS, TS and ND analyzed and organized the data. LS, TS, KK and ND wrote the manuscript.

Corresponding author

Correspondence to Nrisingha Dey.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12033_2022_513_MOESM1_ESM.pdf

Fig S1 Gene integration analysis was performed for (a) FUAS35SCPGFP, MUAS35SCPGFP, by restriction digestion analysis with EcoRI/HindIII. (b, c) PCR amplification of Agrobacterium transformed clones of FUAS35SCPGFP, MUAS35SCPGFP, CaMV35SGFP, CaMV35S²GFP targeting respective promoters, gfp, nptII and rbcSE9 was done using appropriate primers (Table S1). M: 100bp DNA ladder (BioLit ProxiO 100bp DNA Ladder Plus #BLL005). Fig S2 Gene integration analysis was performed for (a) FUAS35SCPGUS, and MUAS35SCPGUS, by restriction digestion analysis with EcoRI/HindIII. (b, c) PCR amplification of Agrobacterium transformed clones of FUAS35SCPGUS, MUAS35SCPGUS, CaMV35SGUS, CaMV35S²GUS targeting respective promoters, gfp, nptII and rbcSE9 was done using appropriate primers (Table S1). M: 100bp DNA ladder. Fig S3 Gene integration analysis by PCR amplification of transformed Agrobacterium clones namely MUAS35SCPPaDef, FUAS35SCPPaDef, CaMV35SPaDef, CaMV35S2PaDef, MUAS35SCPNsDef2, FUAS35SCPNsDef2, CaMV35SNsDef2, and CaMV35S2NsDef2 was done by targeting (a) respective promoters (b) PaDef, NsDef2, nptII and rbcSE9, using appropriate primers (Table S1). M: 100bp DNA ladder. (c) Slot-western blot analysis of purified proteins (NsDef2 and PaDef) from agro infiltrated tobacco plants, along with vector control protein extract and buffer control is shown Supplementary file1 (PDF 731 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sethi, L., Sherpa, T., Kumari, K. et al. Further Characterization of MUAS35SCP and FUAS35SCP Recombinant Promoters and Their Implication in Translational Research. Mol Biotechnol 64, 1356–1366 (2022). https://doi.org/10.1007/s12033-022-00513-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00513-0

Keywords

Navigation