Skip to main content

Advertisement

Log in

An Anecdote on Prospective Protein Targets for Developing Novel Plant Growth Regulators

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Phytohormones are the main regulatory molecules of core signalling networks associated with plant life cycle regulation. Manipulation of hormone signalling cascade enables the control over physiological traits of plant, which has major applications in field of agriculture and food sustainability. Hence, stable analogues of these hormones are long sought after and many of them are currently known, but the quest for more effective, stable and economically viable analogues is still going on. This search has been further strengthened by the identification of the components of signalling cascade such as receptors, downstream cascade members and transcription factors. Furthermore, many proteins of phytohormone cascades are available in crystallized forms. Such crystallized structures can provide the basis for identification of novel interacting compounds using in silico approach. Plenty of computational tools and bioinformatics software are now available that can aid in this process. Here, the metadata of all the major phytohormone signalling cascades are presented along with discussion on major protein–ligand interactions and protein components that may act as a potential target for manipulation of phytohormone signalling cascade. Furthermore, structural aspects of phytohormones and their known analogues are also discussed that can provide the basis for the synthesis of novel analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ben-Ari, G. (2012). The ABA signal transduction mechanism in commercial crops: Learning from Arabidopsis. Plant Cell Reports, 31, 1357–1369.

    Article  CAS  Google Scholar 

  2. Schwechheimer, C., & Willige, B. C. (2009). Shedding light on gibberellic acid signalling. Current Opinion in Plant Biology, 12, 57–62.

    Article  CAS  Google Scholar 

  3. Fu, X., & Harberd, N. P. (2003). Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature, 421, 740–743. https://doi.org/10.1038/nature01387

    Article  PubMed  CAS  Google Scholar 

  4. Planas-Riverola, A., Gupta, A., Betegón-Putze, I., Bosch, N., Ibañes, M., & Caño-Delgado, A. I. (2019). Brassinosteroid signaling in plant development and adaptation to stress. Development, 146(5), dev51894.

    Article  CAS  Google Scholar 

  5. Prerostova, S., Dobrev, P. I., Gaudinova, A., et al. (2018). Cytokinins: Their impact on molecular and growth responses to drought stress and recovery in arabidopsis. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2018.00655

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wasternack, C., & Song, S. (2017). Jasmonates: Biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. Journal of Experimental Botany, 68, 1303–1321.

    PubMed  CAS  Google Scholar 

  7. Park, S. W., Kaimoyo, E., Kumar, D., et al. (2007). Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science (-80), 318, 113–116. https://doi.org/10.1126/science.1147113

    Article  CAS  Google Scholar 

  8. Akiyama, K., Matsuzaki, K. I., & Hayashi, H. (2005). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 435, 824–827. https://doi.org/10.1038/nature03608

    Article  PubMed  CAS  Google Scholar 

  9. Iqbal, N., Khan, N. A., Ferrante, A., et al. (2017). Ethylene role in plant growth, development and senescence: Interaction with other phytohormones. Frontiers in Plant Science, 8, 475. https://doi.org/10.3389/fpls.2017.00475

    Article  PubMed  PubMed Central  Google Scholar 

  10. Larrieu, A., & Vernoux, T. (2015). Comparison of plant hormone signalling systems. Essays in Biochemistry, 58, 165–181. https://doi.org/10.1042/BSE0580165

    Article  PubMed  Google Scholar 

  11. Díaz, K., Espinoza, L., Carvajal, R., et al. (2020). Biological activities and molecular docking of brassinosteroids 24-norcholane type analogs. International Journal of Molecular Sciences, 21, 1832. https://doi.org/10.3390/ijms21051832

    Article  PubMed Central  CAS  Google Scholar 

  12. Park, S. Y., Fung, P., Nishimura, N., et al. (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science (-80), 324, 1068–1071. https://doi.org/10.1126/science.1173041

    Article  CAS  Google Scholar 

  13. Baitha, A., Upadhyay, M., Gopinathan, A., et al. (2019). Synthesis, characterization, and docking studies of novel cyanopyridone analogs with serotonin 5-HT1B receptor agonists. Synthetic Communications, 49, 844–851. https://doi.org/10.1080/00397911.2019.1575422

    Article  CAS  Google Scholar 

  14. Pagadala, N. S., Syed, K., & Tuszynski, J. (2017). Software for molecular docking: A review. Biophysical Reviews, 9, 91–102.

    Article  CAS  Google Scholar 

  15. Rajagopalan, N., Nelson, K. M., Douglas, A. F., et al. (2016). Abscisic acid analogues that act as universal or selective antagonists of phytohormone receptors. Biochemistry, 55, 5155–5164. https://doi.org/10.1021/acs.biochem.6b00605

    Article  PubMed  CAS  Google Scholar 

  16. Hsu, P. K., Dubeaux, G., Takahashi, Y., & Schroeder, J. I. (2021). Signaling mechanisms in abscisic acid-mediated stomatal closure. The Plant Journal, 105, 307–321. https://doi.org/10.1111/tpj.15067

    Article  PubMed  CAS  Google Scholar 

  17. Soon, F. F., Ng, L. M., Zhou, X. E., et al. (2012). Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science (-80), 335, 85–88. https://doi.org/10.1126/science.1215106

    Article  CAS  Google Scholar 

  18. Takahashi, Y., Zhang, J., Hsu, P. K., et al. (2020). MAP3Kinase-dependent SnRK2-kinase activation is required for abscisic acid signal transduction and rapid osmotic stress response. Nature Communications, 11, 1–12. https://doi.org/10.1038/s41467-019-13875-y

    Article  CAS  Google Scholar 

  19. Nishimura, N., Hitomi, K., Arvai, A. S., et al. (2009). Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science (-80), 326, 1373–1379. https://doi.org/10.1126/science.1181829

    Article  CAS  Google Scholar 

  20. Dupeux, F., Antoni, R., Betz, K., et al. (2011). Modulation of abscisic acid signaling in vivo by an engineered receptor-insensitive protein phosphatase type 2C allele. Plant Physiology, 156, 106–116. https://doi.org/10.1104/pp.110.170894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Takeuchi, J., Okamoto, M., Akiyama, T., et al. (2014). Designed abscisic acid analogs as antagonists of PYL-PP2C receptor interactions. Nature Chemical Biology, 10, 477–482. https://doi.org/10.1038/nchembio.1524

    Article  PubMed  CAS  Google Scholar 

  22. Strnad, M. (1997). The aromatic cytokinins. Physiologia Plantarum, 101, 674–688. https://doi.org/10.1111/j.1399-3054.1997.tb01052.x

    Article  CAS  Google Scholar 

  23. Hönig, M., Plíhalová, L., Husičková, A., Nisler, J., & Doležal, K. (2018). Role of cytokinins in senescence, antioxidant defence and photosynthesis. International Journal of Molecular Sciences, 19(12), 4045.

    Article  Google Scholar 

  24. Gamas, P., Brault, M., Jardinaud, M. F., & Frugier, F. (2017). Cytokinins in symbiotic nodulation: When, where, what for? Trends in Plant Science, 22, 792–802.

    Article  CAS  Google Scholar 

  25. Akhtar, S. S., Mekureyaw, M. F., Pandey, C., & Roitsch, T. (2020). Role of cytokinins for interactions of plants with microbial pathogens and pest insects. Frontiers in Plant Science, 10, 1777.

    Article  Google Scholar 

  26. Chang, J., Li, X., Fu, W., et al. (2019). Asymmetric distribution of cytokinins determines root hydrotropism in Arabidopsis thaliana. Cell Research, 29, 984–993. https://doi.org/10.1038/s41422-019-0239-3

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hothorn, M., Dabi, T., & Chory, J. (2011). Structural basis for cytokinin recognition by Arabidopsis thaliana histidine kinase 4. Nature Chemical Biology, 7, 766–768. https://doi.org/10.1038/nchembio.667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Bauer, J., Reiss, K., Veerabagu, M., et al. (2013). Structure-function analysis of arabidopsis thaliana histidine kinase AHK5 bound to its cognate phosphotransfer protein AHP1. Molecular Plant, 6, 959–970. https://doi.org/10.1093/mp/sss126

    Article  PubMed  CAS  Google Scholar 

  29. Hosoda, K., Imamura, A., Katoh, E., et al. (2002). Molecular structure of the GARP family of plant myb-related DNA binding motifs of the Arabidopsis response regulators. The Plant Cell, 14, 2015–2029. https://doi.org/10.1105/tpc.002733

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Suzuki, T., Miwa, K., Ishikawa, K., et al. (2001). The Arabidopsis sensor His-kinase, AHK4, can respond to cytokinins. Plant and Cell Physiology, 42, 107–113. https://doi.org/10.1093/pcp/pce037

    Article  PubMed  CAS  Google Scholar 

  31. Hwang, I., & Sheen, J. (2001). Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature, 413, 383–389. https://doi.org/10.1038/35096500

    Article  PubMed  CAS  Google Scholar 

  32. Hutchison, C. E., Li, J., Argueso, C., et al. (2006). The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. The Plant Cell, 18, 3073–3087. https://doi.org/10.1105/tpc.106.045674

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. D’Agostino, I. B., Deruère, J., & Kieber, J. J. (2000). Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiology, 124, 1706–1717. https://doi.org/10.1104/pp.124.4.1706

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bakshi, A., Shemansky, J. M., Chang, C., & Binder, B. M. (2015). History of research on the plant hormone ethylene. Journal of Plant Growth Regulation, 34, 809–827.

    Article  CAS  Google Scholar 

  35. Abiri, R., Shaharuddin, N. A., Maziah, M., et al. (2017). Role of ethylene and the APETALA 2/ethylene response factor superfamily in rice under various abiotic and biotic stress conditions. Environmental and Experimental Botany, 134, 33–44.

    Article  CAS  Google Scholar 

  36. Klay, I., Gouia, S., Liu, M., et al. (2018). Ethylene Response Factors (ERF) are differentially regulated by different abiotic stress types in tomato plants. Plant Science, 274, 137–145. https://doi.org/10.1016/j.plantsci.2018.05.023

    Article  PubMed  CAS  Google Scholar 

  37. Ansari, M. W., & Tuteja, N. (2013). Stress-induced ethylene in postharvest losses of perishable products. Stewart Postharvest Review, 9, 1–5. https://doi.org/10.2212/spr.2013.4.4

    Article  Google Scholar 

  38. Chang, C., Kwok, S. F., Bleecker, A. B., & Meyerowitz, E. M. (1993). Arabidopsis ethylene-response gene ETR1: Similarity of product to two-component regulators. Science (-80), 262, 539–544. https://doi.org/10.1126/science.8211181

    Article  CAS  Google Scholar 

  39. Hua, J., Chang, C., Sun, Q., & Meyerowitz, E. M. (1995). Ethylene insensitivity conferred by Arabidopsis EPS gene. Science (-80), 269, 1712–1714. https://doi.org/10.1126/science.7569898

    Article  CAS  Google Scholar 

  40. Hua, J., Sakai, H., Nourizadeh, S., et al. (1998). EIN4 and ERS2 are members of the putative ethylene receptor gene family in arabidopsis. The Plant Cell, 10, 1321–1332. https://doi.org/10.1105/tpc.10.8.1321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Sakai, H., Hua, J., Chen, Q. G., et al. (1998). ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 95, 5812–5817. https://doi.org/10.1073/pnas.95.10.5812

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Mayerhofer, H., Panneerselvam, S., Kaljunen, H., et al. (2015). Structural model of the cytosolic domain of the plant ethylene receptor 1 (ETR1). Journal of Biological Chemistry, 290, 2644–2658. https://doi.org/10.1074/jbc.M114.587667

    Article  CAS  Google Scholar 

  43. Bisson, M. M. A., & Groth, G. (2010). New insight in ethylene signaling: Autokinase activity of ETR1 modulates the interaction of receptors and EIN2. Molecular Plant, 3, 882–889. https://doi.org/10.1093/mp/ssq036

    Article  PubMed  CAS  Google Scholar 

  44. Kieber, J. J., Rothenberg, M., Roman, G., et al. (1993). CTR1, a negative regulator of the ethylene response pathway in arabidopsis, encodes a member of the Raf family of protein kinases. Cell, 72, 427–441. https://doi.org/10.1016/0092-8674(93)90119-B

    Article  PubMed  CAS  Google Scholar 

  45. Binder, B. M. (2020). Ethylene signaling in plants. Journal of Biological Chemistry, 295, 7710–7725. https://doi.org/10.1074/jbc.REV120.010854

    Article  CAS  Google Scholar 

  46. Zimmermann, M., Clarke, O., Gulbis, J. M., et al. (2009). Metal binding affinities of Arabidopsis zinc and copper transporters: Selectivities match the relative, but not the absolute, affinities of their amino-terminal domains. Biochemistry, 48, 11640–11654. https://doi.org/10.1021/bi901573b

    Article  PubMed  CAS  Google Scholar 

  47. Rodríguez, F. I., Esch, J. J., Hall, A. E., et al. (1999). A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science (-80), 283, 996–998. https://doi.org/10.1126/science.283.5404.996

    Article  Google Scholar 

  48. Mayerhofer, H., Panneerselvam, S., & Mueller-Dieckmann, J. (2012). Protein kinase domain of CTR1 from Arabidopsis thaliana promotes ethylene receptor cross talk. Journal of Molecular Biology, 415, 768–779. https://doi.org/10.1016/j.jmb.2011.11.046

    Article  PubMed  CAS  Google Scholar 

  49. Allen, M. D., Yamasaki, K., Ohme-Takagi, M., et al. (1998). A novel mode of DNA recognition by a β-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO Journal, 17, 5484–5496. https://doi.org/10.1093/emboj/17.18.5484

    Article  CAS  Google Scholar 

  50. Yamasaki, K., Kigawa, T., Inoue, M., et al. (2005). Solution structure of the major DNA-binding domain of Arabidopsis thaliana ethylene-insensitive3-like3. Journal of Molecular Biology, 348, 253–264. https://doi.org/10.1016/j.jmb.2005.02.065

    Article  PubMed  CAS  Google Scholar 

  51. Song, J., Zhu, C., Zhang, X., et al. (2015). Biochemical and structural insights into the mechanism of DNA recognition by arabidopsis ETHYLENE INSENSITIVE3. PLoS ONE. https://doi.org/10.1371/journal.pone.0137439

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sisler, E. C., Dupille, E., & Serek, M. (1996). Effect of 1-methylcyclopropene and methylenecyclopropane on ethylene binding and ethylene action on cut carnations. Plant Growth Regulation, 18, 79–86. https://doi.org/10.1007/bf00028491

    Article  CAS  Google Scholar 

  53. Li, W., Lacey, R. F., Ye, Y., et al. (2017). Triplin, a small molecule, reveals copper ion transport in ethylene signaling from ATX1 to RAN1. PLoS Genetics. https://doi.org/10.1371/journal.pgen.1006703

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pirrung, M. C., Bleecker, A. B., Inoue, Y., et al. (2008). Ethylene receptor antagonists: Strained alkenes are necessary but not sufficient. Chemistry & Biology, 15, 313–321. https://doi.org/10.1016/j.chembiol.2008.02.018

    Article  CAS  Google Scholar 

  55. Clause, S. D., & Sasse, J. M. (1998). Brassinosteroids: Essential regulators of plant growth and development. Annual Review of Plant Biology, 49, 427–451. https://doi.org/10.1146/annurev.arplant.49.1.427

    Article  Google Scholar 

  56. Kang, Y. H., Breda, A., & Hardtke, C. S. (2017). Brassinosteroid signaling directs formative cell divisions and protophloem differentiation in Arabidopsis root meristems. Dev, 144, 272–280. https://doi.org/10.1242/dev.145623

    Article  CAS  Google Scholar 

  57. Yamaguchi, M., Goué, N., Igarashi, H., et al. (2010). VASCULAR-RELATED NAC-DOMAIN6 and VASCULAR-RELATED NAC-DOMAIN7 effectively induce transdifferentiation into xylem vessel elements under control of an induction system. Plant Physiology, 153, 906–914. https://doi.org/10.1104/pp.110.154013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. De Bruyne, L., Höfte, M., & De Vleesschauwer, D. (2014). Connecting growth and defense: The emerging roles of brassinosteroids and gibberellins in plant innate immunity. Molecular Plant, 7, 943–959.

    Article  CAS  Google Scholar 

  59. Ye, H., Liu, S., Tang, B., et al. (2017). RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nature Communications, 8, 1–13. https://doi.org/10.1038/ncomms14573

    Article  CAS  Google Scholar 

  60. Tunc-Ozdemir, M., & Jones, A. M. (2017). BRL3 and AtRGS1 cooperate to fine tune growth inhibition and ROS activation. PLoS ONE, 12, e0177400. https://doi.org/10.1371/journal.pone.0177400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Fàbregas, N., Lozano-Elena, F., Blasco-Escámez, D., et al. (2018). Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth. Nature Communications, 9, 1–13. https://doi.org/10.1038/s41467-018-06861-3

    Article  CAS  Google Scholar 

  62. Chai, J., Han, Z., & Sun, Y. (2013). Structural insight into BL-induced activation of the BRI1-BAK1complex.

  63. Wang, Z. X., Wang, J., Jiang, J., et al. (2014). Structural insights into the negative regulation of BRI1 signaling by BRI1-interacting protein BKI1. Cell Research, 24, 1328–1341. https://doi.org/10.1038/cr.2014.132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Nosaki, S., Miyakawa, T., Xu, Y., et al. (2018). Structural basis for brassinosteroid response by BIL1/BZR1. Nature Plants, 4, 771–776. https://doi.org/10.1038/s41477-018-0255-1

    Article  PubMed  CAS  Google Scholar 

  65. She, J., Han, Z., Kim, T. W., et al. (2011). Structural insight into brassinosteroid perception by BRI1. Nature, 474, 472–477. https://doi.org/10.1038/nature10178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. She, J., Han, Z., Zhou, B., & Chai, J. (2013). Structural basis for differential recognition of brassinolide by its receptors. Protein & Cell, 4, 475–482. https://doi.org/10.1007/s13238-013-3027-8

    Article  CAS  Google Scholar 

  67. Liu, J., Zhang, D., Sun, X., et al. (2017). Structure-activity relationship of brassinosteroids and their agricultural practical usages. Steroids, 124, 1–17.

    Article  CAS  Google Scholar 

  68. Ali, B., Hayat, S., Hasan, S. A., & Ahmad, A. (2006). Effect of root applied 28-homobrassinolide on the performance of Lycopersicon esculentum. Scientia Horticulturae (Amsterdam), 110, 267–273. https://doi.org/10.1016/j.scienta.2006.07.015

    Article  CAS  Google Scholar 

  69. Serna, M., Hernández, F., Coll, F., et al. (2012). Brassinosteroid analogues effects on the yield and quality parameters of greenhouse-grown pepper (Capsicum annuum L.). Plant Growth Regulation, 68, 333–342. https://doi.org/10.1007/s10725-012-9718-y

    Article  CAS  Google Scholar 

  70. Sato, A., Sasaki, S., Matsuzaki, J., & Yamamoto, K. T. (2014). Light-dependent gravitropism and negative phototropism of inflorescence stems in a dominant Aux/IAA mutant of Arabidopsis thaliana, axr2. Journal of Plant Research, 127, 627–639. https://doi.org/10.1007/s10265-014-0643-1

    Article  PubMed  CAS  Google Scholar 

  71. Quintana-Escobar, A. O., Nic-Can, G. I., Galaz Avalos, R. M., et al. (2019). Transcriptome analysis of the induction of somatic embryogenesis in Coffea canephora and the participation of ARF and Aux/IAA genes. PeerJ, 2019, e7752. https://doi.org/10.7717/peerj.7752

    Article  Google Scholar 

  72. Salazar-Iribe, A., & De-la-Peña, C. (2020). Auxins, the hidden player in chloroplast development. Plant Cell Reports, 39, 1595–1608.

    Article  CAS  Google Scholar 

  73. Tan, X., Calderon-Villalobos, L. I. A., Sharon, M., et al. (2007). Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature, 446, 640–645. https://doi.org/10.1038/nature05731

    Article  PubMed  CAS  Google Scholar 

  74. Kim, Y., Park, C., Cha, S., et al. (2020). Determinants of PB1 domain interactions in Auxin response factor ARF5 and repressor IAA17. Journal of Molecular Biology, 432, 4010–4022. https://doi.org/10.1016/j.jmb.2020.04.007

    Article  PubMed  CAS  Google Scholar 

  75. Freire-Rios, A., Tanaka, K., Crespo, I., et al. (2020). Architecture of DNA elements mediating ARF transcription factor binding and auxin-responsive gene expression in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 117, 24557–24566. https://doi.org/10.1073/pnas.2009554117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Lee, S., Sundaram, S., Armitage, L., et al. (2014). Defining binding efficiency and specificity of auxins for SCF TIR1/AFB-Aux/IAA Co-receptor complex formation. ACS Chemical Biology, 9, 673–682. https://doi.org/10.1021/cb400618m

    Article  PubMed  CAS  Google Scholar 

  77. Uzunova, V. V., Quareshy, M., Del Genio, C. I., & Napier, R. M. (2016). Tomographic docking suggests the mechanism of auxin receptor TIR1 selectivity. Open Biology. https://doi.org/10.1098/rsob.160139

    Article  PubMed  PubMed Central  Google Scholar 

  78. Tyler, L., Thomas, S. G., Hu, J., et al. (2004). Della proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiology, 135, 1008–1019. https://doi.org/10.1104/pp.104.039578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Penfield, S., Gilday, A. D., Halliday, K. J., & Graham, I. A. (2006). DELLA-mediated cotyledon expansion breaks coat-imposed seed dormancy. Current Biology, 16, 2366–2370. https://doi.org/10.1016/j.cub.2006.10.057

    Article  PubMed  CAS  Google Scholar 

  80. Achard, P., Gusti, A., Cheminant, S., et al. (2009). Gibberellin signaling controls cell proliferation rate in arabidopsis. Current Biology, 19, 1188–1193. https://doi.org/10.1016/j.cub.2009.05.059

    Article  PubMed  CAS  Google Scholar 

  81. Djakovic-Petrovic, T., De, W. M., Voesenek, L. A. C. J., & Pierik, R. (2007). DELLA protein function in growth responses to canopy signals. The Plant Journal, 51, 117–126. https://doi.org/10.1111/j.1365-313X.2007.03122.x

    Article  PubMed  CAS  Google Scholar 

  82. Jiang, C., Gao, X., Liao, L., et al. (2007). Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis. Plant Physiology, 145, 1460–1470. https://doi.org/10.1104/pp.107.103788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Achard, P., Baghour, M., Chapple, A., et al. (2007). The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proceedings of the National Academy of Sciences of the United States of America, 104, 6484–6489. https://doi.org/10.1073/pnas.0610717104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. MacMillan, J. (2001). Occurrence of gibberellins in vascular plants, fungi, and bacteria. Journal of Plant Growth Regulation, 20, 387–442. https://doi.org/10.1007/s003440010038

    Article  PubMed  CAS  Google Scholar 

  85. Ueguchi-Tanaka, M., & Matsuoka, M. (2010). The perception of gibberellins: Clues from receptor structure. Current Opinion in Plant Biology, 13, 503–508.

    Article  CAS  Google Scholar 

  86. Murase, K., Hirano, Y., Sun, T. P., & Hakoshima, T. (2008). Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature, 456, 459–463. https://doi.org/10.1038/nature07519

    Article  PubMed  CAS  Google Scholar 

  87. Fonouni-Farde, C., Diet, A., & Frugier, F. (2016). Root development and endosymbioses: DELLAs lead the orchestra. Trends in Plant Science, 21, 898–900.

    Article  CAS  Google Scholar 

  88. Locascio, A., Blázquez, M. A., & Alabadí, D. (2013). Dynamic regulation of cortical microtubule organization through prefoldin-DELLA interaction. Current Biology, 23, 804–809. https://doi.org/10.1016/j.cub.2013.03.053

    Article  PubMed  CAS  Google Scholar 

  89. Fan, D., Ran, L., Hu, J., et al. (2020). miR319a/TCP module and DELLA protein regulate trichome initiation synergistically and improve insect defenses in Populus tomentosa. New Phytologist, 227, 867–883. https://doi.org/10.1111/nph.16585

    Article  CAS  Google Scholar 

  90. Richter, R., Behringer, C., Müller, I. K., & Schwechheimer, C. (2010). The GATA-type transcription factors GNC and GNL/CGA1 repress gibberellin signaling downstream from DELLA proteins and phytochrome-interacting factors. Genes & Development, 24, 2093–2104. https://doi.org/10.1101/gad.594910

    Article  CAS  Google Scholar 

  91. Zentella, R., Zhang, Z. L., Park, M., et al. (2007). Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. The Plant Cell, 19, 3037–3057. https://doi.org/10.1105/tpc.107.054999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Lau, O. S., & Deng, X. W. (2010). Plant hormone signaling lightens up: Integrators of light and hormones. Current Opinion in Plant Biology, 13, 571–577.

    Article  CAS  Google Scholar 

  93. Wild, M., Davière, J. M., Cheminant, S., et al. (2012). The Arabidopsis DELLA RGA-LIKE3 is a direct target of MYC2 and modulates jasmonate signaling responses. The Plant Cell, 24, 3307–3319. https://doi.org/10.1105/tpc.112.101428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Jing, Y., Guo, Q., Zha, P., & Lin, R. (2019). The chromatin-remodelling factor PICKLE interacts with CONSTANS to promote flowering in Arabidopsis. Plant, Cell and Environment, 42, 2495–2507. https://doi.org/10.1111/pce.13557

    Article  PubMed  CAS  Google Scholar 

  95. Itoh, H., Ueguchi-Tanaka, M., Sato, Y., et al. (2002). The gibberellin signaling pathway is regulated by the appearance and disappearance of slender rice1 in nuclei. The Plant Cell, 14, 57–70. https://doi.org/10.1105/tpc.010319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Mander, L. N., Sherburn, M., Camp, D., et al. (1998). Effects of d-ring modified gibberellins on flowering and growth in Lolium temulentum. Phytochemistry, 49, 2195–2206. https://doi.org/10.1016/S0031-9422(98)00310-0

    Article  CAS  Google Scholar 

  97. Bergner, C., Lischewski, M., Adam, G., & Sembdner, G. (1982). Biological activity of gibberellin analogues. Planta, 155, 231–237. https://doi.org/10.1007/BF00392721

    Article  PubMed  CAS  Google Scholar 

  98. Tian, H., Xu, Y., Liu, S., et al. (2017). Synthesis of gibberellic acid derivatives and their effects on plant growth. Molecules. https://doi.org/10.3390/molecules22050694

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wasternack, C., & Hause, B. (2013). Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany, 111, 1021–1058.

    Article  CAS  Google Scholar 

  100. Campos, M. L., Kang, J. H., & Howe, G. A. (2014). Jasmonate-triggered plant immunity. Journal of Chemical Ecology, 40, 657–675. https://doi.org/10.1007/s10886-014-0468-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Ruan, J., Zhou, Y., Zhou, M., et al. (2019). Jasmonic acid signaling pathway in plants. International Journal of Molecular Sciences, 20, 2479.

    Article  CAS  Google Scholar 

  102. Zhang, F., Ke, J., Zhang, L., et al. (2017). Structural insights into alternative splicing-mediated desensitization of jasmonate signaling. Proceedings of the National Academy of Sciences of the United States of America, 114, 1720–1725. https://doi.org/10.1073/pnas.1616938114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Zhang, F., Yao, J., Ke, J., et al. (2015). Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling. Nature, 525, 269–273. https://doi.org/10.1038/nature14661

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Martin-Arevalillo, R., Nanao, M. H., Larrieu, A., et al. (2017). Structure of the Arabidopsis TOPLESS corepressor provides insight into the evolution of transcriptional repression. Proceedings of the National Academy of Sciences of the United States of America, 114, 8107–8112. https://doi.org/10.1073/pnas.1703054114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Xie, D. X., Feys, B. F., James, S., et al. (1998). COI1: An Arabidopsis gene required for jasmonate-regulated defense and fertility. Science (-80), 280, 1091–1094. https://doi.org/10.1126/science.280.5366.1091

    Article  CAS  Google Scholar 

  106. Yang, J., Duan, G., Li, C., et al. (2019). The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Frontiers in Plant Science, 10, 1349.

    Article  Google Scholar 

  107. Sheard, L. B., Tan, X., Mao, H., et al. (2010). Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature, 468, 400–407. https://doi.org/10.1038/nature09430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Sloan, J., Hakenjos, J. P., Gebert, M., et al. (2020). Structural basis for the complex DNA binding behavior of the plant stem cell regulator WUSCHEL. Nature Communications. https://doi.org/10.1038/s41467-020-16024-y

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ke, J., Ma, H., Gu, X., et al. (2015). Structural basis for recognition of diverse transcriptional repressors by the TOPLESS family of corepressors. Science Advances. https://doi.org/10.1126/sciadv.1500107

    Article  PubMed  PubMed Central  Google Scholar 

  110. Honda, I., Seto, H., Turuspekov, Y., et al. (2006). Inhibitory effects of jasmonic acid and its analogues on barley (Hordeum vulgare L.) anther extrusion. Plant Growth Regulation, 48, 201–206. https://doi.org/10.1007/s10725-006-0003-9

    Article  CAS  Google Scholar 

  111. Pathak, R. K., Baunthiyal, M., Shukla, R., et al. (2017). In silico identification of mimicking molecules as defense inducers triggering jasmonic acid mediated immunity against alternaria blight disease in brassica species. Frontiers in Plant Science, 8, 609. https://doi.org/10.3389/fpls.2017.00609

    Article  PubMed  PubMed Central  Google Scholar 

  112. Cook, C. E., Whichard, L. P., Turner, B., et al. (1966). Germination of witchweed (striga lutea lour.): Isolation and properties of a potent stimulant. Science (-80), 154, 1189–1190. https://doi.org/10.1126/science.154.3753.1189

    Article  CAS  Google Scholar 

  113. Xie, X. (2016). Structural diversity of strigolactones and their distribution in the plant kingdom. Journal of Pesticide Science, 41, 175–180. https://doi.org/10.1584/jpestics.J16-02

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Bürger, M., & Chory, J. (2020). The many models of strigolactone signaling. Trends in Plant Science, 25, 395–405.

    Article  CAS  Google Scholar 

  115. Yoneyama, K., Xie, X., Kusumoto, D., et al. (2007). Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta, 227, 125–132. https://doi.org/10.1007/s00425-007-0600-5

    Article  PubMed  CAS  Google Scholar 

  116. Zhao, L. H., Zhou, X. E., Yi, W., et al. (2015). Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3. Cell Research, 25, 1219–1236. https://doi.org/10.1038/cr.2015.122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Yao, R., Ming, Z., Yan, L., et al. (2016). DWARF14 is a non-canonical hormone receptor for strigolactone. Nature, 536, 469–473. https://doi.org/10.1038/nature19073

    Article  PubMed  CAS  Google Scholar 

  118. Abe, S., Sado, A., Tanaka, K., et al. (2014). Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proceedings of the National Academy of Sciences of the United States of America, 111, 18084–18089. https://doi.org/10.1073/pnas.1410801111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Ueno, K., Furumoto, T., Umeda, S., et al. (2014). Heliolactone, a non-sesquiterpene lactone germination stimulant for root parasitic weeds from sunflower. Phytochemistry, 108, 122–128. https://doi.org/10.1016/j.phytochem.2014.09.018

    Article  PubMed  CAS  Google Scholar 

  120. Charnikhova, T. V., Gaus, K., Lumbroso, A., et al. (2017). Zealactones. Novel natural strigolactones from maize. Phytochemistry, 137, 123–131. https://doi.org/10.1016/j.phytochem.2017.02.010

    Article  PubMed  CAS  Google Scholar 

  121. Il, K. H., Kisugi, T., Khetkam, P., et al. (2014). Avenaol, a germination stimulant for root parasitic plants from Avena strigosa. Phytochemistry, 103, 85–88. https://doi.org/10.1016/j.phytochem.2014.03.030

    Article  CAS  Google Scholar 

  122. Fukui, K., Ito, S., Ueno, K., et al. (2011). New branching inhibitors and their potential as strigolactone mimics in rice. Bioorganic Med Chem Lett, 21, 4905–4908. https://doi.org/10.1016/j.bmcl.2011.06.019

    Article  CAS  Google Scholar 

  123. Jia, K. P., Kountche, B. A., Jamil, M., et al. (2016). Nitro-phenlactone, a carlactone analog with pleiotropic strigolactone activities. Molecular Plant, 9, 1341–1344.

    Article  CAS  Google Scholar 

  124. Jamil, M., Kountche, B. A., Haider, I., et al. (2018). Methyl phenlactonoates are efficient strigolactone analogs with simple structure. Journal of Experimental Botany, 69, 2319–2331. https://doi.org/10.1093/jxb/erx438

    Article  PubMed  CAS  Google Scholar 

  125. Janda, M., & Ruelland, E. (2015). Magical mystery tour: Salicylic acid signalling. Environmental and Experimental Botany, 114, 117–128. https://doi.org/10.1016/j.envexpbot.2014.07.003

    Article  CAS  Google Scholar 

  126. Yang, L., Li, B., Zheng, X. Y., et al. (2015). Salicylic acid biosynthesis is enhanced and contributes to increased biotrophic pathogen resistance in Arabidopsis hybrids. Nature Communications. https://doi.org/10.1038/ncomms8309

    Article  PubMed  PubMed Central  Google Scholar 

  127. Bernsdorff, F., Döring, A. C., Gruner, K., et al. (2016). Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid-dependent and -independent pathways. The Plant Cell, 28, 102–129. https://doi.org/10.1105/tpc.15.00496

    Article  PubMed  CAS  Google Scholar 

  128. Lee, S., Kim, S. G., & Park, C. M. (2010). Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytologist, 188, 626–637. https://doi.org/10.1111/j.1469-8137.2010.03378.x

    Article  CAS  Google Scholar 

  129. Prodhan, M. Y., Munemasa, S., Nahar, M. N. E. N., et al. (2018). Guard cell salicylic acid signaling is integrated into abscisic acid signaling via the Ca2+/CPK-dependent pathway. Plant Physiology, 178, 441–450. https://doi.org/10.1104/pp.18.00321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Šašek, V., Janda, M., Delage, E., et al. (2014). Constitutive salicylic acid accumulation in pi4kIIIβ1β2 Arabidopsis plants stunts rosette but not root growth. New Phytologist, 203, 805–816. https://doi.org/10.1111/nph.12822

    Article  CAS  Google Scholar 

  131. Mou, Z., Fan, W., & Dong, X. (2003). Inducers of plant systemic acquired resistance Regulate NPR1 function through redox changes. Cell, 113, 935–944. https://doi.org/10.1016/S0092-8674(03)00429-X

    Article  PubMed  CAS  Google Scholar 

  132. Jin, H., Choi, S. M., Kang, M. J., et al. (2018). Salicylic acid-induced transcriptional reprogramming by the HAC-NPR1-TGA histone acetyltransferase complex in Arabidopsis. Nucleic Acids Research, 46, 11712–11725. https://doi.org/10.1093/nar/gky847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Wang, W., Withers, J., Li, H., et al. (2020). Structural basis of salicylic acid perception by Arabidopsis NPR proteins. Nature, 586, 311–316. https://doi.org/10.1038/s41586-020-2596-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Rong, D., Luo, N., Mollet, J. C., et al. (2016). Salicylic Acid Regulates Pollen Tip Growth through an NPR3/NPR4-Independent Pathway. Molecular Plant, 9, 1478–1491. https://doi.org/10.1016/j.molp.2016.07.010

    Article  PubMed  CAS  Google Scholar 

  135. Chen, Z., Ricigliano, J. W., & Klessig, D. F. (1993). Purification and characterization of a soluble salicylic acid-binding protein from tobacco. Proceedings of the National Academy of Sciences of the United States of America, 90, 9533–9537. https://doi.org/10.1073/pnas.90.20.9533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Du, H., & Klessig, D. F. (1997). Identification of a soluble, high-affinity salicylic acid-binding protein in tobacco. Plant Physiology, 113, 1319–1327. https://doi.org/10.1104/pp.113.4.1319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Slaymaker, D. H., Navarre, D. A., Clark, D., et al. (2002). The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proceedings of the National Academy of Sciences of the United States of America, 99, 11640–11645. https://doi.org/10.1073/pnas.182427699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Tian, M., Caroline, C. V. D., Liu, P. P., et al. (2012). The combined use of photoaffinity labeling and surface plasmon resonance-based technology identifies multiple salicylic acid-binding proteins. The Plant Journal, 72, 1027–1038. https://doi.org/10.1111/tpj.12016

    Article  PubMed  CAS  Google Scholar 

  139. Manohar, M., Tian, M., Moreau, M., et al. (2015). Identification of multiple salicylic acid-binding proteins using two high throughput screens. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2014.00777

    Article  PubMed  PubMed Central  Google Scholar 

  140. Westfall CS, Zubieta C, Herrmann J, et al (2012) Structural basis for prereceptor modulation of plant hormones by gh3 proteins. Science (80- ) 336:1708–1711. https://doi.org/10.1126/science.1221863

  141. Tian, M., Sasvari, Z., Gonzalez, P. A., et al. (2015). Salicylic acid inhibits the replication of Tomato bushy stunt virus by directly targeting a host component in the replication complex. Molecular Reproduction & Development, 28, 379–386. https://doi.org/10.1094/MPMI-09-14-0259-R

    Article  CAS  Google Scholar 

  142. Liao, Y., Tian, M., Zhang, H., et al. (2015). Salicylic acid binding of mitochondrial alpha-ketoglutarate dehydrogenase E2 affects mitochondrial oxidative phosphorylation and electron transport chain components and plays a role in basal defense against tobacco mosaic virus in tomato. New Phytologist, 205, 1296–1307. https://doi.org/10.1111/nph.13137

    Article  CAS  Google Scholar 

  143. Moreau, M., Westlake, T., Zampogna, G., et al. (2013). The Arabidopsis oligopeptidases TOP1 and TOP2 are salicylic acid targets that modulate SA-mediated signaling and the immune response. The Plant Journal, 76, 603–614. https://doi.org/10.1111/tpj.12320

    Article  PubMed  CAS  Google Scholar 

  144. Manohar, M., Choi, H. W., Manosalva, P., et al. (2017). Plant and human MORC proteins have DNA-modifying activities similar to type II topoisomerases, but require one or more additional factors for full activity. Molecular Reproduction & Development, 30, 87–100. https://doi.org/10.1094/MPMI-10-16-0208-R

    Article  CAS  Google Scholar 

  145. Choi, H. W., Manohar, M., Manosalva, P., et al. (2016). Activation of plant innate immunity by extracellular high mobility group Box 3 and its inhibition by salicylic acid. PLoS Pathogens. https://doi.org/10.1371/journal.ppat.1005518

    Article  PubMed  PubMed Central  Google Scholar 

  146. Round, A., Brown, E., Marcellin, R., et al. (2013). Determination of the GH3.12 protein conformation through HPLC-integrated SAXS measurements combined with X-ray crystallography. Acta Crystallographica, Section D: Biological Crystallography, 69, 2072–2080. https://doi.org/10.1107/S0907444913019276

    Article  CAS  Google Scholar 

  147. Zambounis, A. G., Kalamaki, M. S., Tani, E. E., et al. (2012). Expression analysis of defense-related genes in cotton (Gossypium hirsutum) after Fusarium oxysporum f. sp. vasinfectum infection and following chemical elicitation using a salicylic acid analog and methyl jasmonate. Plant Molecular Biology Reporter, 30, 225–234. https://doi.org/10.1007/s11105-011-0335-0

    Article  CAS  Google Scholar 

  148. Faize, L., & Faize, M. (2018). Functional analogues of salicylic acid and their use in crop protection. Agronomy, 8(1), 5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, DST-FIST Sponsored Department, for providing necessary facilities to perform experiments. We acknowledge Education Department, Government of Gujarat, India for the providing research fellowship to Rohit Patel and Krina Mehta under the ScHeme Of Developing High-quality research (SHODH).

Funding

Authors are also thankful to UGC (Start-up Research Grant) for providing fund under the F.30–521/2020(BSR), Under Secretary FD-III Section, University Grant Commission, New Delhi 110002.

Author information

Authors and Affiliations

Authors

Contributions

RP and KM wrote the first draft. DG and MS finalized the manuscript.

Corresponding authors

Correspondence to Dweipayan Goswami or Meenu Saraf.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, R., Mehta, K., Goswami, D. et al. An Anecdote on Prospective Protein Targets for Developing Novel Plant Growth Regulators. Mol Biotechnol 64, 109–129 (2022). https://doi.org/10.1007/s12033-021-00404-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00404-w

Keywords

Navigation