Skip to main content
Log in

Cloning, Expression, and Purification of the Human Synthetic Survivin Protein in Escherichia coli Using Response Surface Methodology (RSM)

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Survivin is one of the novel members of the apoptosis inhibitor protein family in humans. The main activity of the Survivin protein is to suppress caspases activity resulting in negative regulation of apoptosis. Survivin protein can be a potential target for the treatment of cancers between cancerous and normal cells. In the present research, the synthetic Survivin gene with PelB secretion signal peptide was cloned into a prokaryotic expression vector pET21a. The recombinant plasmid pET21a-PelB-Surv was expressed in Escherichia coli (E.coli) BL21, and the relative molecular mass of expressed protein was calculated 34,000 g/mol, approximately. The recombinant protein was purified through chromatography column and characterized by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE). Response surface methodology (RSM) was used to design 20 experiments for optimization of IPTG concentration, post-induction period, and cell density of induction (OD600). The optimum levels of the selected parameters were successfully determined to be 0.28 mM for IPTG concentration, 10 h for post-induction period, and 3.40768 for cell density (OD600). These findings resulted in 4.14-fold increases in the Survivin production rate of optimum expression conditions (93.6363 mg/ml).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Sarela, A., Macadam, R., Farmery, S., Markham, A., & Guillou, P. (2000). Expression of the antiapoptosis gene, Survivin, predicts death from recurrent colorectal carcinoma. Gut, 46(5), 645–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li, Y., Ma, X., Wu, X., Liu, X., & Liu, L. (2014). Prognostic significance of Survivin in breast cancer: Meta-analysis. The Breast Journal, 20(5), 514–524.

    Article  CAS  PubMed  Google Scholar 

  3. Goossens-Beumer, I., Zeestraten, E., Benard, A., Christen, T., Reimers, M., Keijzer, R., et al. (2014). Clinical prognostic value of combined analysis of Aldh1, Survivin, and EpCAM expression in colorectal cancer. British Journal of Cancer, 110(12), 2935–2944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen, J., Li, T., Liu, Q., Jiao, H., Yang, W., Liu, X., et al. (2014). Clinical and prognostic significance of HIF-1α, PTEN, CD44v6, and Survivin for gastric cancer: A meta-analysis. PLoS ONE, 9(3), 91842.

    Article  Google Scholar 

  5. Yie, S.-M., Lou, B., Ye, S.-R., He, X., Cao, M., Xie, K., et al. (2009). Clinical significance of detecting survivin-expressing circulating cancer cells in patients with non-small cell lung cancer. Lung Cancer, 63(2), 284–290.

    Article  PubMed  Google Scholar 

  6. Zaffaroni, N., & Daidone, M. G. (2002). Survivin expression and resistance to anticancer treatments: Perspectives for new therapeutic interventions. Drug Resistance Updates, 5(2), 65–72.

    Article  CAS  PubMed  Google Scholar 

  7. Cheung, C. H. A., Chen, H.-H., Kuo, C.-C., Chang, C.-Y., Coumar, M. S., Hsieh, H.-P., et al. (2009). Survivin counteracts the therapeutic effect of microtubule de-stabilizers by stabilizing tubulin polymers. Molecular Cancer, 8(1), 1–15.

    Article  Google Scholar 

  8. Moriai, R., Tsuji, N., Moriai, M., Kobayashi, D., & Watanabe, N. (2009). Survivin plays as a resistant factor against tamoxifen-induced apoptosis in human breast cancer cells. Breast Cancer Research and Treatment, 117(2), 261–271.

    Article  CAS  PubMed  Google Scholar 

  9. Sun, X. P., Dong, X., Lin, L., Jiang, X., Wei, Z., Zhai, B., et al. (2014). Up-regulation of Survivin by AKT and hypoxia-inducible factor 1α contributes to cisplatin resistance in gastric cancer. The FEBS Journal, 281(1), 115–128.

    Article  CAS  PubMed  Google Scholar 

  10. McKenzie, J. A., Liu, T., Jung, J. Y., Jones, B. B., Ekiz, H. A., Welm, A. L., et al. (2013). Survivin promotion of melanoma metastasis requires upregulation of α 5 integrin. Carcinogenesis, 34(9), 2137–2144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, M., Coen, J. J., Suzuki, Y., Siedow, M. R., Niemierko, A., Khor, L.-Y., et al. (2010). Survivin is a potential mediator of prostate cancer metastasis. International Journal of Radiation Oncology*Biology*Physics, 78(4), 1095–1103.

    Article  CAS  PubMed  Google Scholar 

  12. Di Stefano, A., Iovino, F., Lombardo, Y., Eterno, V., Höger, T., Dieli, F., et al. (2010). Survivin is regulated by interleukin-4 in colon cancer stem cells. Journal of Cellular Physiology, 225(2), 555–561.

    Article  PubMed  Google Scholar 

  13. Li, C., Yan, Y., Ji, W., Bao, L., Qian, H., Chen, L., et al. (2012). OCT4 positively regulates Survivin expression to promote cancer cell proliferation and leads to poor prognosis in esophageal squamous cell carcinoma. PLoS ONE, 7(11), e49693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu, C.-J., Ou, J.-H., Wang, M.-L., Jialielihan, N., & Liu, Y.-H. (2015). Elevated Survivin mediated multidrug resistance and reduced apoptosis in breast cancer stem cells. Journal of B.U.ON, 20(5), 1287–1294.

    PubMed  Google Scholar 

  15. Chantalat, L., Skoufias, D. A., Kleman, J.-P., Jung, B., Dideberg, O., & Margolis, R. L. (2000). Crystal structure of human Survivin reveals a bow tie–shaped dimer with two unusual α-helical extensions. Molecular Cell, 6(1), 183–189.

    Article  CAS  PubMed  Google Scholar 

  16. Jeyaprakash, A. A., Klein, U. R., Lindner, D., Ebert, J., Nigg, E. A., & Conti, E. (2007). Structure of a Survivin–Borealin–INCENP core complex reveals how chromosomal passengers travel together. Cell, 131(2), 271–285.

    Article  CAS  PubMed  Google Scholar 

  17. Vader, G., Kauw, J. J., Medema, R. H., & Lens, S. M. (2006). Survivin mediates targeting of the chromosomal passenger complex to the centromere and midbody. EMBO Reports, 7(1), 85–92.

    Article  CAS  PubMed  Google Scholar 

  18. Tsai, S.-L., Chang, Y.-C., Sarvagalla, S., Wang, S., Coumar, M. S., & Cheung, C. H. A. (2019). Cloning, expression, and purification of the recombinant pro-apoptotic dominant-negative survivin T34A–C84A protein in Escherichia coli. Protein Expression and Purification, 160, 73–83.

    Article  CAS  PubMed  Google Scholar 

  19. Baneyx, F., & Mujacic, M. (2004). Recombinant protein folding and misfolding in Escherichia coli. Nature Biotechnology, 22(11), 1399–1408.

    Article  CAS  PubMed  Google Scholar 

  20. Soares, C. R., Gomide, F. I., Ueda, E. K., & Bartolini, P. (2003). Periplasmic expression of human growth hormone via plasmid vectors containing the λPL promoter: Use of HPLC for product quantification. Protein Engineering, 16(12), 1131–1138.

    Article  CAS  PubMed  Google Scholar 

  21. Arora, D., & Khanna, N. (1996). Method for increasing the yield of properly folded recombinant human gamma interferon from inclusion bodies. Journal of Biotechnology, 52(2), 127–133.

    Article  CAS  PubMed  Google Scholar 

  22. Rai, M., & Padh, H. (2001). Expression systems for production of heterologous proteins. Current Science, 80(9), 1121–1128.

    CAS  Google Scholar 

  23. Lim, H. K., & Jung, K. H. (1998). Improvement of heterologous protein productivity by controlling postinduction specific growth rate in recombinant Escherichia coli under control of the PL promoter. Biotechnology Progress, 14(4), 548–553.

    Article  CAS  PubMed  Google Scholar 

  24. Arthur, P. M., Duckworth, B., & Seidman, M. (1990). High level expression of interleukin-1β in a recombinant Escherichia coli strain for use in a controlled bioreactor. Journal of Biotechnology, 13(1), 29–46.

    Article  CAS  PubMed  Google Scholar 

  25. Shin, C. S., Hong, M. S., Bae, C. S., & Lee, J. (1997). Enhanced production of human mini-proinsulin in fed-batch cultures at high cell density of Escherichia coli BL21 (DE3)[pET-3aT2M2]. Biotechnology Progress, 13(3), 249–257.

    Article  CAS  PubMed  Google Scholar 

  26. Yoon, S. K., Kang, W. K., & Park, T. H. (1994). Fed-batch operation of recombinant Escherichia coli containing trp promoter with controlled specific growth rate. Biotechnology and Bioengineering, 43(10), 995–999.

    Article  CAS  PubMed  Google Scholar 

  27. Narum, D. L., Kumar, S., Rogers, W. O., Fuhrmann, S. R., Liang, H., Oakley, M., et al. (2001). Codon optimization of gene fragments encoding plasmodium falciparum merzoite proteins enhances DNA vaccine protein expression and immunogenicity in mice. Infection and Immunity, 69(12), 7250–7253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maldonado, L., Hernández, V., Rivero, E., de la Rosa, A. B., Flores, J. L. F., Acevedo, L. G. O., & De León Rodríguez, A. (2007). Optimization of culture conditions for a synthetic gene expression in Escherichia coli using response surface methodology: The case of human interferon beta. Biomolecular Engineering, 24, 217–222.

    Article  CAS  PubMed  Google Scholar 

  29. Chen, H.-C., Hwang, C.-F., & Mou, D.-G. (1992). High-density Escherichia coli cultivation process for hyperexpression of recombinant porcine growth hormone. Enzyme and Microbial Technology, 14(4), 321–326.

    Article  CAS  PubMed  Google Scholar 

  30. Nikerel, I. E., Öner, E., Kirdar, B., & Yildirim, R. (2006). Optimization of medium composition for biomass production of recombinant Escherichia coli cells using response surface methodology. Biochemical Engineering Journal, 32(1), 1–6.

    Article  CAS  Google Scholar 

  31. Baskar, G., Dharmendira Kumar, M., Anand Prabu, A., Renganathan, S., & Yoo, C. (2009). Optimization of carbon and nitrogen sources for L-asparaginase production by Enterobacter aerogenes using response surface methodology. Chemical and Biochemical Engineering Quarterly, 23(3), 393–397.

    CAS  Google Scholar 

  32. Transformation B. The Heat Shock Method. JoVE Science Education Database Basic Methods in Cellular and Molecular Biology. 2015.

  33. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.

    Article  CAS  PubMed  Google Scholar 

  34. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.

    Article  CAS  PubMed  Google Scholar 

  35. Bokarewa, M., Lindblad, S., Bokarew, D., & Tarkowski, A. (2005). Balance between Survivin, a key member of the apoptosis inhibitor family, and its specific antibodies determines erosivity in rheumatoid arthritis. Arthritis Research & Therapy, 7(2), 349.

    Article  Google Scholar 

  36. Zhang, W., Gao, Y., Li, F., Tong, X., Ren, Y., Han, X., et al. (2015). YAP promotes malignant progression of Lkb1-deficient lung adenocarcinoma through downstream regulation of Survivin. Cancer Research, 75(21), 4450–4457.

    Article  CAS  PubMed  Google Scholar 

  37. Sarela, A., Verbeke, C., Ramsdale, J., Davies, C., Markham, A., & Guillou, P. (2002). Expression of Survivin, a novel inhibitor of apoptosis and cell cycle regulatory protein, in pancreatic adenocarcinoma. British Journal of Cancer, 86(6), 886–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, M., Latham, D. E., Delaney, M. A., & Chakravarti, A. (2005). Survivin mediates resistance to antiandrogen therapy in prostate cancer. Oncogene, 24(15), 2474–2482.

    Article  CAS  PubMed  Google Scholar 

  39. Falleni, M., Pellegrini, C., Marchetti, A., Oprandi, B., Buttitta, F., Barassi, F., et al. (2003). Survivin gene expression in early-stage non-small cell lung cancer. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland., 200(5), 620–626.

    Article  CAS  Google Scholar 

  40. Brierley, R. A., Davis, G. R., Holtz, G. C. (1994). Production of insulin-like growth factor-1 in methylotrophic yeast cells. Google Patents.

  41. Gopal, G. J., & Kumar, A. (2013). Strategies for the production of recombinant protein in Escherichia coli. The Protein Journal, 32(6), 419–425.

    Article  CAS  PubMed  Google Scholar 

  42. Gray, G. L., Baldridge, J. S., McKeown, K. S., Heyneker, H. L., & Chang, C. N. (1985). Periplasmic production of correctly processed human growth hormone in Escherichia coli: Natural and bacterial signal sequences are interchangeable. Gene, 39(2–3), 247–254.

    Article  CAS  PubMed  Google Scholar 

  43. Meng, L., Xi, J., & Yeung, M. (2016). Degradation of extracellular polymeric substances (EPS) extracted from activated sludge by low-concentration ozonation. Chemosphere, 147, 248–255.

    Article  CAS  PubMed  Google Scholar 

  44. Shokri, A., Sandén, A., & Larsson, G. (2003). Cell and process design for targeting of recombinant protein into the culture medium of Escherichia coli. Applied Microbiology and Biotechnology, 60(6), 654–664.

    Article  CAS  PubMed  Google Scholar 

  45. Tong, Y., & Lighthart, B. (2000). The annual bacterial particle concentration and size distribution in the ambient atmosphere in a rural area of the Willamette Valley, Oregon. Aerosol Science & Technology, 32(5), 393–403.

    Article  CAS  Google Scholar 

  46. Choi, J., & Lee, S. (2004). Secretory and extracellular production of recombinant proteins using Escherichia coli. Applied Microbiology and Biotechnology, 64(5), 625–635.

    Article  CAS  PubMed  Google Scholar 

  47. Galloway, C. A., Sowden, M. P., & Smith, H. C. (2003). Increasing the yield of soluble recombinant protein expressed in E. coli by induction during late log phase. Biotechniques, 34(3), 524–530.

    Article  CAS  PubMed  Google Scholar 

  48. Chae, H. J., DeLisa, M. P., Cha, H. J., Weigand, W. A., Rao, G., & Bentley, W. E. (2000). Framework for online optimization of recombinant protein expression in high-cell-density Escherichia coli cultures using GFP-fusion monitoring. Biotechnology and Bioengineering., 69(3), 275–285.

    Article  CAS  PubMed  Google Scholar 

  49. De Marco, A. (2009). Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microbial Cell Factories, 8(1), 1–18.

    Article  Google Scholar 

  50. Pratap, J., Rajamohan, G., & Dikshit, K. L. (2000). Characteristics of glycosylated streptokinase secreted from Pichia pastoris: Enhanced resistance of SK to proteolysis by glycosylation. Applied Microbiology and Biotechnology, 53(4), 469–475.

    Article  CAS  PubMed  Google Scholar 

  51. Aneja, R., Datt, M., Singh, B., Kumar, S., & Sahni, G. (2009). Identification of a new exosite involved in catalytic turnover by the streptokinase-plasmin activator complex during human plasminogen activation. Journal of Biological Chemistry, 284(47), 32642–32650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen, R. (2012). Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnology Advances, 30(5), 1102–1107.

    Article  CAS  PubMed  Google Scholar 

  53. Francis, D. M., & Page, R. (2010). Strategies to optimize protein expression in E. coli. Current Protocols in Protein Science. https://doi.org/10.1002/0471140864.ps0524s61

    Article  PubMed  PubMed Central  Google Scholar 

  54. Xie, L., Hall, D., Eiteman, M., & Altman, E. (2003). Optimization of recombinant aminolevulinate synthase production in Escherichia coli using factorial design. Applied Microbiology and Biotechnology., 63(3), 267–273.

    Article  CAS  PubMed  Google Scholar 

  55. Larentis, A. L., Argondizzo, A. P. C., dos Santos, E. G., Jessouron, E., Galler, R., & Medeiros, M. A. (2011). Cloning and optimization of induction conditions for mature PsaA (pneumococcal surface adhesin A) expression in Escherichia coli and recombinant protein stability during long-term storage. Protein Expression and Purification, 78(1), 38–47.

    Article  CAS  PubMed  Google Scholar 

  56. Zamani, M., Berenjian, A., Hemmati, S., Nezafat, N., Ghoshoon, M. B., Dabbagh, F., et al. (2015). Cloning, expression, and purification of a synthetic human growth hormone in Escherichia coli using response surface methodology. Molecular biotechnology, 57(3), 241–250.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Agricultural and Natural Resources and Education Research Center (AREEO), Kerman, Iran.

Author information

Authors and Affiliations

Authors

Contributions

LYG participated in the conceptualization, study design, planning, methodology, and execution of the study. The data gathered were reviewed and edited by NR. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Laleh Yazdanpanah Goharrizi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 787 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostami, N., Goharrizi, L.Y. Cloning, Expression, and Purification of the Human Synthetic Survivin Protein in Escherichia coli Using Response Surface Methodology (RSM). Mol Biotechnol 65, 326–336 (2023). https://doi.org/10.1007/s12033-021-00399-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00399-4

Keywords

Navigation