Skip to main content

Advertisement

Log in

Survivin plays as a resistant factor against tamoxifen-induced apoptosis in human breast cancer cells

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Tamoxifen has been the mainstay of endocrine therapy for estrogen receptor-positive breast cancer. However, approximately 40% of breast cancer patients do not respond to tamoxifen treatment. Further, most tumors eventually acquire tamoxifen resistance. Therefore, it is necessary to develop effective modalities to enhance the efficacy of tamoxifen in breast cancer treatment. In this study, we investigated the mechanism by which breast cancer cells develop resistance against tamoxifen from the viewpoint of tamoxifen-induced apoptosis. Overexpression of the anti-apoptotic molecule survivin rendered the human breast cancer cells MCF-7 resistant to tamoxifen-induced apoptosis. To examine whether the down-regulation of survivin can enhance tamoxifen-induced apoptosis, we introduced siRNA targeting the survivin gene (survivin-siRNA) into MCF-7 cells. Survivin-siRNA transfection not only induced apoptosis without tamoxifen treatment but also augmented the tamoxifen-induced apoptosis. We have previously demonstrated that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (HRIs), which are widely used to reduce the serum cholesterol levels in hypercholesterolemia patients, decreases survivin expression in colon cancer cells. To develop a pharmacological approach for improving the efficacy of tamoxifen treatment, we determined whether HRIs can enhance tamoxifen-induced apoptosis. Lovastatin, an HRI, down-regulated the expression of survivin protein in MCF-7 cells in a dose-dependent manner. In addition, the proportion of apoptotic cells induced by the tamoxifen and lovastatin combination was greater than the theoretical additive effect. These results suggest that survivin may function as a factor inducing resistance against tamoxifen-induced apoptosis, and the combined use of tamoxifen and HRI may be a novel approach to overcome tamoxifen resistance in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Early Breast Cancer Trialists’ Collaborative Group (1998) Tamoxifen for early breast cancer: an overview of the randomised trials. Lancet 351:1451–1467. doi:10.1016/S0140-6736(97)11423-4

    Article  Google Scholar 

  2. Jaiyesimi IA, Buzdar AU, Decker DA, Hortobagyi GN (1995) Use of tamoxifen for breast cancer: twenty-eight years later. J Clin Oncol 13:513–529

    PubMed  CAS  Google Scholar 

  3. Muss HB (1992) Endocrine therapy for advanced breast cancer: a review. Breast Cancer Res Treat 21:15–26. doi:10.1007/BF01811960

    Article  PubMed  CAS  Google Scholar 

  4. Normanno N, Di Maio M, De Maio E, De Luca A, de Matteis A, Giordano A, Perrone F, NCI-Naple Breast Cancer Group (2005) Mechanisms of endocrine resistance and novel therapeutic strategies in breast cancer. Endocr Relat Cancer 12:721–747. doi:10.1677/erc.1.00857

    Article  PubMed  CAS  Google Scholar 

  5. Mandlekar S, Kong AN (2001) Mechanisms of tamoxifen-induced apoptosis. Apoptosis 6:469–477. doi:10.1023/A:1012437607881

    Article  PubMed  CAS  Google Scholar 

  6. Mandlekar S, Hebbar V, Christov K, Kong AN (2000) Pharmacodynamics of tamoxifen and its 4-hydroxy and N-desmethyl metabolites: activation of caspases and induction of apoptosis in rat mammary tumors and in human breast cancer cell lines. Cancer Res 60:6601–6606

    PubMed  CAS  Google Scholar 

  7. Thiantanawat A, Long BJ, Brodie AM (2003) Signaling pathways of apoptosis activated by aromatase inhibitors and antiestrogens. Cancer Res 63:8037–8050

    PubMed  CAS  Google Scholar 

  8. Mandlekar S, Yu R, Tan TH, Kong AN (2000) Activation of caspase–3 and c-Jun NH2-terminal kinase-1 signaling pathways in tamoxifen-induced apoptosis of human breast cancer cells. Cancer Res 60:5995–6000

    PubMed  CAS  Google Scholar 

  9. Saikumar P, Dong Z, Mikhailov V, Denton M, Weinberg JM, Venkatachalam MA (1999) Apoptosis: definition, mechanisms, and relevance to disease. Am J Med 107:489–506. doi:10.1016/S0002-9343(99)00259-4

    Article  PubMed  CAS  Google Scholar 

  10. Shin S, Sung BJ, Cho YS, Kim HJ, Ha NC, Hwang JI et al (2001) An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and -7. Biochemistry 40:1117–1123. doi:10.1021/bi001603q

    Article  PubMed  CAS  Google Scholar 

  11. Tamm I, Wang Y, Sausville E, Scudiero DA, Vigna N, Oltersdorf T et al (1998) IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res 58:5315–5320

    PubMed  CAS  Google Scholar 

  12. Asanuma K, Kobayashi D, Furuya D, Tsuji N, Yagihashi A, Watanabe N (2002) A role for survivin in radioresistance of pancreatic cancer cells. Jpn J Cancer Res 93:1057–1062

    PubMed  CAS  Google Scholar 

  13. Law M, Rudnicka AR (2006) Statin safety: a systematic review. Am J Cardiol 97:52C–60C. doi:10.1016/j.amjcard.2005.12.010

    Article  PubMed  CAS  Google Scholar 

  14. Holstein SA, Wohlford-Lenane CL, Hohl RJ (2002) Isoprenoids influence expression of Ras and Ras-related proteins. Biochemistry 41:13698–13704. doi:10.1021/bi026251x

    Article  PubMed  CAS  Google Scholar 

  15. Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430. doi:10.1038/343425a0

    Article  PubMed  CAS  Google Scholar 

  16. Newman CM, Magee AI (1993) Posttranslational processing of the ras superfamily of small GTP-binding proteins. Biochim Biophys Acta 1155:79–96

    PubMed  CAS  Google Scholar 

  17. Hancock JF, Magee AI, Childs JE, Marshall CJ (1999) All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57:1167–1177. doi:10.1016/0092-8674(89)90054-8

    Article  Google Scholar 

  18. Vojtek AB, Der CJ (1998) Increasing complexity of the Ras signaling pathway. J Biol Chem 273:19925–19928. doi:10.1074/jbc.273.32.19925

    Article  PubMed  CAS  Google Scholar 

  19. Shaw RJ, Cantley LC (2006) Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441:424–430. doi:10.1038/nature04869

    Article  PubMed  CAS  Google Scholar 

  20. Kaneko R, Tsuji N, Asanuma K, Tanabe H, Kobayashi D, Watanabe N (2007) Survivin down-regulation plays a crucial role in 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor-induced apoptosis in cancer. J Biol Chem 282:19273–19281. doi:10.1074/jbc.M610350200

    Article  PubMed  CAS  Google Scholar 

  21. Asanuma K, Tsuji N, Endoh T, Yagihashi A, Watanabe N (2004) Survivin enhances Fas ligand expression via up-regulation of specificity protein 1-mediated gene transcription in colon cancer cells. J Immunol 172:3922–3929

    PubMed  CAS  Google Scholar 

  22. Endoh T, Tsuji N, Asanuma K, Yagihashi A, Watanabe N (2005) Survivin enhances telomerase activity via up-regulation of specificity protein 1- and c-Myc-mediated human telomerase reverse transcriptase gene transcription. Exp Cell Res 305:300–311. doi:10.1016/j.yexcr.2004.12.014

    Article  PubMed  CAS  Google Scholar 

  23. Mahotka C, Wenzel M, Springer E, Gabbert HE, Gerharz CD (1999) Survivin-deltaEx3 and survivin-2B: two novel splice variants of the apoptosis inhibitor survivin with different antiapoptotic properties. Cancer Res 59:6097–6102

    PubMed  CAS  Google Scholar 

  24. Taylor IW, Hodson PJ, Green MD, Sutherland RL (1983) Effects of tamoxifen on cell cycle progression of synchronous MCF-7 human mammary carcinoma cells. Cancer Res 43:4007–4010

    PubMed  CAS  Google Scholar 

  25. Osborne CK, Boldt DH, Clark GM, Trent JM (1983) Effects of tamoxifen on human breast cancer cell cycle kinetics: accumulation of cells in early G1 phase. Cancer Res 43:3583–3585

    PubMed  CAS  Google Scholar 

  26. Williams NS, Gaynor RB, Scoggin S, Verma U, Gokaslan T, Simmang C et al (2003) Identification and validation of genes involved in the pathogenesis of colorectal cancer using cDNA microarrays and RNA interference. Clin Cancer Res 9:931–946

    PubMed  CAS  Google Scholar 

  27. Tsuji N, Asanuma K, Kobayashi D, Yagihashi A, Watanabe N (2005) Introduction of a survivin gene-specific small inhibitory RNA inhibits growth of pancreatic cancer cells. Anticancer Res 25:3967–3972

    PubMed  CAS  Google Scholar 

  28. Dietze EC, Caldwell LE, Grupin SL, Mancini M, Seewaldt VL (2001) Tamoxifen but not 4-hydroxytamoxifen initiates apoptosis in p53(-) normal human mammary epithelial cells by inducing mitochondrial depolarization. J Biol Chem 276:5384–5394. doi:10.1074/jbc.M007915200

    Article  PubMed  CAS  Google Scholar 

  29. Hirsch T, Susin SA, Marzo I, Marchetti P, Zamzami N, Kroemer G (1998) Mitochondrial permeability transition in apoptosis and necrosis. Cell Biol Toxicol 14:141–145. doi:10.1023/A:1007486022411

    Article  PubMed  CAS  Google Scholar 

  30. Fulda S, Scaffidi C, Susin SA, Krammer PH, Kroemer G, Peter ME et al (1998) Activation of mitochondria and release of mitochondrial apoptogenic factors by betulinic acid. J Biol Chem 273:33942–33948. doi:10.1074/jbc.273.51.33942

    Article  PubMed  CAS  Google Scholar 

  31. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES et al (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489. doi:10.1016/S0092-8674(00)80434-1

    Article  PubMed  CAS  Google Scholar 

  32. Mandlekar S, Yu R, Tan TH, Kong AN (2000) Activation of caspase-3 and c-Jun NH2-terminal kinase-1 signaling pathways in tamoxifen-induced apoptosis of human breast cancer cells. Cancer Res 60:5995–6000

    PubMed  CAS  Google Scholar 

  33. Janicke RU, Ng P, Sprengart ML, Porter AG (1998) Caspase-3 is required for alpha-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis. J Biol Chem 273:15540–15545. doi:10.1074/jbc.273.25.15540

    Article  PubMed  CAS  Google Scholar 

  34. Kisanga ER, Gjerde J, Guerrieri-Gonzaga A, Pigatto F, Pesci-Feltri A, Robertson C et al (2004) Tamoxifen and metabolite concentrations in serum and breast cancer tissue during three dose regimens in a randomized preoperative trial. Clin Cancer Res 10:2336–2343. doi:10.1158/1078-0432.CCR-03-0538

    Article  PubMed  CAS  Google Scholar 

  35. Thibault A, Samid D, Tompkins AC, Figg WD, Cooper MR, Hohl RJ et al (1996) Phase I study of lovastatin, an inhibitor of the mevalonate pathway, in patients with cancer. Clin Cancer Res 2:483–491

    PubMed  CAS  Google Scholar 

  36. Larner J, Jane J, Laws E, Packer R, Myers C, Shaffrey M (1998) A phase I-II trial of lovastatin for anaplastic astrocytoma and glioblastoma multiforme. Am J Clin Oncol 21:579–583. doi:10.1097/00000421-199812000-00010

    Article  PubMed  CAS  Google Scholar 

  37. Kim WS, Kim MM, Choi HJ, Yoon SS, Lee MH, Park K et al (2001) Phase II study of high-dose lovastatin in patients with advanced gastric adenocarcinoma. Invest New Drugs 19:81–83. doi:10.1023/A:1006481423298

    Article  PubMed  CAS  Google Scholar 

  38. Schachter M (2005) Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update. Fundam Clin Pharmacol 19:117–125

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Watanabe.

Additional information

Naoki Tsuji substantially contributed to this work and should also be considered a first author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moriai, R., Tsuji, N., Moriai, M. et al. Survivin plays as a resistant factor against tamoxifen-induced apoptosis in human breast cancer cells. Breast Cancer Res Treat 117, 261–271 (2009). https://doi.org/10.1007/s10549-008-0164-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0164-5

Keywords

Navigation