Skip to main content

Advertisement

Log in

Advances in Pathophysiology of Triple-Negative Breast Cancer: The Potential of lncRNAs for Clinical Diagnosis, Treatment, and Prognostic Monitoring

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Recent studies have shown that long non-coding RNAs (lncRNAs) are involved in several gene expression regulation processes, including epigenetic regulation, transcriptional regulation, post-transcriptional regulation, and translation regulation. It also plays a crucial role in the regulation of several characteristics of cancer biology, and the dysregulation of lncRNA expression in cancer may be part of the cause of cancer progression. Meanwhile, more and more studies are trying to determine the association between lncRNA expression and TNBC, as well as the functional role and molecular mechanism of the abnormally expressed lncRNA. Therefore, this review lists some abnormal lncRNAs in TNBC, further analyzes their molecular mechanisms and biological roles in the development of TNBC, and summarizes the potential of lncRNAs as biomarkers and therapeutic targets of TNBC, so as to provide ideas for clinical diagnosis, targeted therapy, and prognosis monitoring of TNBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68, 394–424.

    Google Scholar 

  2. Sørlie, T., Perou, C. M., Tibshirani, R., et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proceedings of the National Academy of Sciences, 98, 10869–10874.

    Article  Google Scholar 

  3. Lehmann, B. D., & Pietenpol, J. A. (2014). Identification and use of biomarkers in treatment strategies for triple-negative breast cancer subtypes. The Journal of Pathology, 232, 142–150.

    Article  PubMed  Google Scholar 

  4. Burstein, M. D., Tsimelzon, A., Poage, G. M., et al. (2015). Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clinical Cancer Research, 21, 1688–1698.

    Article  CAS  PubMed  Google Scholar 

  5. Liu, Y. R., Jiang, Y. Z., Xu, X. E., et al. (2016). Comprehensive transcriptome analysis identifies novel molecular subtypes and subtype-specific RNAs of triple-negative breast cancer. Breast Cancer Research, 18, 33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Dent, R., Trudeau, M., Pritchard, K. I., et al. (2007). Triple-negative breast cancer: Clinical features and patterns of recurrence. Clinical Cancer Research, 13, 4429–4434.

    Article  PubMed  Google Scholar 

  7. Coates, A. S., Winer, E. P., Goldhirsch, A., et al. (2015). Tailoring therapies–improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. Annals of Oncology, 26, 1533–1546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kaufmann, M., Hortobagyi, G. N., Goldhirsch, A., et al. (2006). Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: An update. Journal of Clinical Oncology, 24, 1940–1949.

    Article  PubMed  Google Scholar 

  9. Sana, J., Faltejskova, P., Svoboda, M., & Slaby, O. (2012). Novel classes of non-coding RNAs and cancer. Journal of Translational Medicine, 10, 103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rinn, J. L., & Chang, H. Y. (2012). Genome regulation by long noncoding RNAs. Annual Review of Biochemistry, 81, 145–166.

    Article  CAS  PubMed  Google Scholar 

  11. Cheetham, S. W., Gruhl, F., Mattick, J. S., & Dinger, M. E. (2013). Long noncoding RNAs and the genetics of cancer. British Journal of Cancer, 108, 2419–2425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ponting, C. P., Oliver, P. L., & Reik, W. (2009). Evolution and functions of long noncoding RNAs. Cell, 136, 629–641.

    Article  CAS  PubMed  Google Scholar 

  13. Hauptman, N., & Glavač, D. (2013). Long non-coding RNA in cancer. International Journal of Molecular Sciences, 14, 4655–4669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fatica, A., & Bozzoni, I. (2014). Long non-coding RNAs: New players in cell differentiation and development. Nature Reviews Genetics, 15, 7–21.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, K., Luo, Z., Zhang, Y., et al. (2017). Long non-coding RNAs as novel biomarkers for breast cancer invasion and metastasis. Oncology Letters, 14, 1895–1904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Deligdisch, L., Kalir, T., Cohen, C. J., de Latour, M., Le Bouedec, G., & Penault-Llorca, F. (2000). Endometrial histopathology in 700 patients treated with tamoxifen for breast cancer. Gynecologic Oncology, 78, 181–186.

    Article  CAS  PubMed  Google Scholar 

  17. Lin, A., Li, C., Xing, Z., et al. (2016). The LINK-A lncRNA activates normoxic HIF1α signalling in triple-negative breast cancer. Nature Cell Biology., 18, 213–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lin, A., Hu, Q., Li, C., et al. (2017). The LINK-A lncRNA interacts with PtdIns (3,4,5)P(3) to hyperactivate AKT and confer resistance to AKT inhibitors. Nature Cell Biology, 19, 238–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Djebali, S., Davis, C. A., Merkel, A., et al. (2012). Landscape of transcription in human cells. Nature, 489, 101–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guo, L., Zhao, Y., Yang, S., Zhang, H., Wu, Q., & Chen, F. (2014). An integrated evolutionary analysis of miRNA-lncRNA in mammals. Molecular Biology Reports, 41, 201–207.

    Article  CAS  PubMed  Google Scholar 

  21. Vikram, R., Ramachandran, R., & Abdul, K. S. (2014). Functional significance of long non-coding RNAs in breast cancer. Breast Cancer, 21, 515–521.

    Article  PubMed  Google Scholar 

  22. Bhan, A., Soleimani, M., & Mandal, S. S. (2017). Long noncoding RNA and cancer: A new paradigm. Cancer Research, 77, 3965–3981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jiang, M., Huang, O., Xie, Z., et al. (2014). A novel long non-coding RNA-ARA: Adriamycin resistance-associated. Biochemical Pharmacology, 87, 254–283.

    Article  CAS  PubMed  Google Scholar 

  24. Meijer, D., van Agthoven, T., Bosma, P. T., Nooter, K., & Dorssers, L. C. (2006). Functional screen for genes responsible for tamoxifen resistance in human breast cancer cells. Molecular Cancer Research, 4, 379–386.

    Article  CAS  PubMed  Google Scholar 

  25. Wu, J., Chen, H., Ye, M., et al. (2019). Long noncoding RNA HCP5 contributes to cisplatin resistance in human triple-negative breast cancer via regulation of PTEN expression. Biomedicine & Pharmacotherapy, 115, 108869.

    Article  CAS  Google Scholar 

  26. Tang, T., Cheng, Y., She, Q., et al. (2018). Long non-coding RNA TUG1 sponges miR-197 to enhance cisplatin sensitivity in triple negative breast cancer. Biomedicine & Pharmacotherapy, 107, 338–346.

    Article  CAS  Google Scholar 

  27. Shen, X., Xie, B., Ma, Z., et al. (2015). Identification of novel long non-coding RNAs in triple-negative breast cancer. Oncotarget, 6, 21730–21739.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen, C., Li, Z., Yang, Y., Xiang, T., Song, W., & Liu, S. (2015). Microarray expression profiling of dysregulated long non-coding RNAs in triple-negative breast cancer. Cancer Biology & Therapy, 16, 856–865.

    Article  CAS  Google Scholar 

  29. Varga, Z., Theurillat, J. P., Filonenko, V., et al. (2006). Preferential nuclear and cytoplasmic NY-BR-1 protein expression in primary breast cancer and lymph node metastases. Clinical Cancer Research, 12, 2745–2751.

    Article  CAS  PubMed  Google Scholar 

  30. Jiang, X., Zhou, Y., & Sun, A. J. (2018). NEAT1 contributes to breast cancer progression through modulating miR-448 and ZEB1. Journal of Cellular Physiology, 233, 8558–8566.

    Article  CAS  PubMed  Google Scholar 

  31. Ke, H., Zhao, L., Feng, X., et al. (2016). NEAT1 is Required for survival of breast cancer cells through FUS and miR-548. Gene Regulation Systems Biology, 10, 11–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kong, Y., & Geng, C. (2019). LncRNA PAPAS may promote triple-negative breast cancer by downregulating miR-34a. Journal of International Medical Research, 47, 3709–3718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, Y., Xu, Z., Jiang, J., et al. (2013). Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Developmental Cell, 25, 69–80.

    Article  CAS  PubMed  Google Scholar 

  34. Eades, G., Wolfson, B., Zhang, Y., Li, Q., Yao, Y., & Zhou, Q. (2015). lincRNA-RoR and miR-145 regulate invasion in triple-negative breast cancer via targeting ARF6. Molecular Cancer Research, 13, 330–338.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, X., Zhou, Y., Mao, F., Lin, Y., Shen, S., & Sun, Q. (2020). lncRNA AFAP1-AS1 promotes triple negative breast cancer cell proliferation and invasion via targeting miR-145 to regulate MTH1 expression. Science and Reports, 10, 7662.

    Article  CAS  Google Scholar 

  36. Jin, C., Yan, B., Lu, Q., Lin, Y., & Ma, L. (2016). Reciprocal regulation of Hsa-miR-1 and long noncoding RNA MALAT1 promotes triple-negative breast cancer development. Tumour Biology, 37, 7383–7394.

    Article  CAS  PubMed  Google Scholar 

  37. Zuo, Y., Li, Y., Zhou, Z., Ma, M., & Fu, K. (2017). Long non-coding RNA MALAT1 promotes proliferation and invasion via targeting miR-129-5p in triple-negative breast cancer. Biomedicine & Pharmacotherapy, 95, 922–928.

    Article  CAS  Google Scholar 

  38. Collina, F., Aquino, G., Brogna, M., et al. (2019). LncRNA HOTAIR up-regulation is strongly related with lymph nodes metastasis and LAR subtype of Triple Negative Breast Cancer. Journal of Cancer., 10, 2018–2024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, Y. L., Overstreet, A. M., Chen, M. S., et al. (2015). Combined inhibition of EGFR and c-ABL suppresses the growth of triple-negative breast cancer growth through inhibition of HOTAIR. Oncotarget, 6, 11150–11161.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tao, S., He, H., & Chen, Q. (2015). Estradiol induces HOTAIR levels via GPER-mediated miR-148a inhibition in breast cancer. Journal of Translational Medicine, 13, 131.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Xue, X., Yang, Y. A., Zhang, A., et al. (2016). LncRNA HOTAIR enhances ER signaling and confers tamoxifen resistance in breast cancer. Oncogene, 35, 2746–2755.

    Article  CAS  PubMed  Google Scholar 

  42. Yang, J., Meng, X., Yu, Y., Pan, L., Zheng, Q., & Lin, W. (2019). LncRNA POU3F3 promotes proliferation and inhibits apoptosis of cancer cells in triple-negative breast cancer by inactivating caspase 9. Bioscience, Biotechnology, and Biochemistry, 83, 1117–1123.

    Article  CAS  PubMed  Google Scholar 

  43. Shen, X., Zhong, J., Yu, P., Zhao, Q., & Huang, T. (2019). YY1-regulated LINC00152 promotes triple negative breast cancer progression by affecting on stability of PTEN protein. Biochemical and Biophysical Research Communications, 509, 448–454.

    Article  CAS  PubMed  Google Scholar 

  44. Sharma, U., Barwal, T. S., Khandelwal, A., et al. (2021). LncRNA ZFAS1 inhibits triple-negative breast cancer by targeting STAT3. Biochimie, 182, 99–107.

    Article  CAS  PubMed  Google Scholar 

  45. Wang, N., Hou, M., Zhan, Y., & Sheng, X. (2019). LncRNA PTCSC3 inhibits triple-negative breast cancer cell proliferation by downregulating lncRNA H19. Journal of Cellular Biochemistry, 120, 15083–15088.

    Article  CAS  PubMed  Google Scholar 

  46. Yu, F., Wang, L., & Zhang, B. (2019). Long non-coding RNA DRHC inhibits the proliferation of cancer cells in triple negative breast cancer by downregulating long non-coding RNA HOTAIR. Oncology Letters, 18, 3817–3822.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. da Silva, J. L., Cardoso Nunes, N. C., Izetti, P., de Mesquita, G. G., & de Melo, A. C. (2020). Triple negative breast cancer: A thorough review of biomarkers. Critical Reviews in Oncology/Hematology., 145, 102855.

    Article  PubMed  Google Scholar 

  48. Yang, G., Lu, X., & Yuan, L. (2014). LncRNA: A link between RNA and cancer. Biochimica et Biophysica Acta, 1839, 1097–1109.

    Article  CAS  PubMed  Google Scholar 

  49. Liu, M., Xing, L. Q., & Liu, Y. J. (2017). A three-long noncoding RNA signature as a diagnostic biomarker for differentiating between triple-negative and non-triple-negative breast cancers. Medicine, 96, e6222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Abdul-Rahman, U., & Győrffy, B. (2018). linc00673 (ERRLR01) is a prognostic indicator of overall survival in breast cancer. Transcription, 9, 17–29.

    Article  PubMed  CAS  Google Scholar 

  51. Liu, A. N., Qu, H. J., Gong, W. J., Xiang, J. Y., Yang, M. M., & Zhang, W. (2019). LncRNA AWPPH and miRNA-21 regulates cancer cell proliferation and chemosensitivity in triple-negative breast cancer by interacting with each other. Journal of Cellular Biochemistry, 120, 14860–14866.

    Article  CAS  PubMed  Google Scholar 

  52. Wang, K., Li, X., Song, C., & Li, M. (2018). LncRNA AWPPH promotes the growth of triple-negative breast cancer by up-regulating frizzled homolog 7 (FZD7). Bioscience Reports. https://doi.org/10.1042/BSR20181223

  53. Song, X., Liu, Z., & Yu, Z. (2019). LncRNA NEF is downregulated in triple negative breast cancer and correlated with poor prognosis. Acta Biochimica et Biophysica Sinica, 51, 386–392.

    Article  CAS  PubMed  Google Scholar 

  54. Bamodu, O. A., Huang, W. C., Lee, W. H., et al. (2016). Aberrant KDM5B expression promotes aggressive breast cancer through MALAT1 overexpression and downregulation of hsa-miR-448. BMC Cancer, 16, 160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Zhao, Z., Chen, C., Liu, Y., & Wu, C. (2014). 17β-Estradiol treatment inhibits breast cell proliferation, migration and invasion by decreasing MALAT-1 RNA level. Biochemical and Biophysical Research Communications, 445, 388–393.

    Article  CAS  PubMed  Google Scholar 

  56. Li, S., Zhou, J., Wang, Z., Wang, P., Gao, X., & Wang, Y. (2018). Long noncoding RNA GAS5 suppresses triple negative breast cancer progression through inhibition of proliferation and invasion by competitively binding miR-196a-5p. Biomedicine & Pharmacotherapy, 104, 451–457.

    Article  CAS  Google Scholar 

  57. Zheng, S., & Li, M. (2020). lncRNA GAS5-promoted apoptosis in triple-negative breast cancer by targeting miR-378a-5p/SUFU signaling. Journal of Cellular Biochemistry, 121, 2225–2235.

    Article  CAS  PubMed  Google Scholar 

  58. Maniotis, A. J., Folberg, R., Hess, A., et al. (1999). Vascular channel formation by human melanoma cells in vivo and in vitro: Vasculogenic mimicry. American Journal of Pathology, 155, 739–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lin, P., Wang, W., Sun, B. C., et al. (2012). Vasculogenic mimicry is a key prognostic factor for laryngeal squamous cell carcinoma: A new pattern of blood supply. Chinese Medical Journal, 125, 3445–3449.

    CAS  PubMed  Google Scholar 

  60. Tao, W., Sun, W., Zhu, H., & Zhang, J. (2018). Knockdown of long non-coding RNA TP73-AS1 suppresses triple negative breast cancer cell vasculogenic mimicry by targeting miR-490-3p/TWIST1 axis. Biochemical and Biophysical Research Communications, 504, 629–634.

    Article  CAS  PubMed  Google Scholar 

  61. Shen, Y., Quan, J., Wang, M., et al. (2017). Tumor vasculogenic mimicry formation as an unfavorable prognostic indicator in patients with breast cancer. Oncotarget, 8, 56408–56416.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Feng, J., Huang, C., Wren, J. D., et al. (2015). Tetraspanin CD82: A suppressor of solid tumors and a modulator of membrane heterogeneity. Cancer and Metastasis Reviews, 34, 619–633.

    Article  CAS  PubMed  Google Scholar 

  63. Aram, R., Dotan, I., Hotz-Wagenblatt, A., & Canaani, D. (2017). Identification of a novel metastasis inducing lncRNA which suppresses the KAI1/CD82 metastasis suppressor gene and is upregulated in triple-negative breast cancer. Oncotarget, 8, 67538–67552.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Coqueret, O. (2003). New roles for p21 and p27 cell-cycle inhibitors: A function for each cell compartment? Trends in Cell Biology, 13, 65–70.

    Article  CAS  PubMed  Google Scholar 

  65. Baldin, V., Lukas, J., Marcote, M. J., Pagano, M., & Draetta, G. (1993). Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes & Development, 7, 812–821.

    Article  CAS  Google Scholar 

  66. Wang, S., Ke, H., Zhang, H., et al. (2018). LncRNA MIR100HG promotes cell proliferation in triple-negative breast cancer through triplex formation with p27 loci. Cell Death & Disease, 9, 805.

    Article  CAS  Google Scholar 

  67. Ling, H., Fabbri, M., & Calin, G. A. (2013). MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nature Reviews Drug Discovery, 12, 847–865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sakthianandeswaren, A., Liu, S., & Sieber, O. M. (2016). Long noncoding RNA LINP1: Scaffolding non-homologous end joining. Cell Death Discovery., 2, 16059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shi, F., Xiao, F., Ding, P., Qin, H., & Huang, R. (2016). Long Noncoding RNA highly up-regulated in liver Cancer predicts unfavorable outcome and regulates metastasis by MMPs in triple-negative breast cancer. Archives of Medical Research, 47, 446–453.

    Article  CAS  PubMed  Google Scholar 

  70. Corcoran, D. L., Pandit, K. V., Gordon, B., Bhattacharjee, A., Kaminski, N., & Benos, P. V. (2009). Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS ONE, 4, e5279.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Valastyan, S., Reinhardt, F., Benaich, N., et al. (2015). Retraction notice to: A pleiotropically acting microRNA, miR-31. Inhibits Breast Cancer Metastasis. Cell., 161, 417.

    CAS  Google Scholar 

  72. Sossey-Alaoui, K., Downs-Kelly, E., Das, M., Izem, L., Tubbs, R., & Plow, E. F. (2011). WAVE3, an actin remodeling protein, is regulated by the metastasis suppressor microRNA, miR-31, during the invasion-metastasis cascade. International Journal of Cancer., 129, 1331–1343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Augoff, K., McCue, B., Plow, E. F., & Sossey-Alaoui, K. (2012). miR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer. Molecular Cancer, 11, 5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schwab, L. P., Peacock, D. L., Majumdar, D., et al. (2012). Hypoxia-inducible factor 1α promotes primary tumor growth and tumor-initiating cell activity in breast cancer. Breast Cancer Research, 14, R6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hu, Z., Huang, P., Yan, Y., Zhou, Z., Wang, J., & Wu, G. (2019). Hepatitis B virus X protein related lncRNA WEE2-AS1 promotes hepatocellular carcinoma proliferation and invasion. Biochemical and biophysical research communications, 508, 79–86.

    Article  CAS  PubMed  Google Scholar 

  76. Wang, R., Huang, Z., Qian, C., et al. (2020). LncRNA WEE2-AS1 promotes proliferation and inhibits apoptosis in triple negative breast cancer cells via regulating miR-32-5p/TOB1 axis. Biochemical and Biophysical Research Communications, 526, 1005–1012.

    Article  CAS  PubMed  Google Scholar 

  77. Fan, H., Yuan, J., Li, X., et al. (2020). LncRNA LINC00173 enhances triple-negative breast cancer progression by suppressing miR-490–3p expression. Biomedicine & Pharmacotherapy, 125, 109987.

    Article  CAS  Google Scholar 

  78. Wang, X., Chen, T., Zhang, Y., et al. (2019). Long noncoding RNA Linc00339 promotes triple-negative breast cancer progression through miR-377-3p/HOXC6 signaling pathway. Pharmacological Research, 234, 13303–13317.

    CAS  Google Scholar 

  79. Xu, Z., Liu, C., Zhao, Q., et al. (2020). Long non-coding RNA CCAT2 promotes oncogenesis in triple-negative breast cancer by regulating stemness of cancer cells. JPharmacological Research, 152, 104628.

    CAS  Google Scholar 

  80. Wang, L., Liu, D., Wu, X., et al. (2018). Long non-coding RNA (LncRNA) RMST in triple-negative breast cancer (TNBC): Expression analysis and biological roles research. Journal of Cellular Physiology, 233, 6603–6612.

    Article  CAS  PubMed  Google Scholar 

  81. Yang, X., Luo, E., Liu, X., Han, B., Yu, X., & Peng, X. (2016). Delphinidin-3-glucoside suppresses breast carcinogenesis by inactivating the Akt/HOTAIR signaling pathway. BMC Cancer, 16, 423.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Yang, Y., Xun, N., & Wu, J. G. (2019). Long non-coding RNA FGF14-AS2 represses proliferation, migration, invasion, and induces apoptosis in breast cancer by sponging miR-205-5p. European Review for Medical and Pharmacological Sciences, 23, 6971–6982.

    CAS  PubMed  Google Scholar 

  83. Schimmer, A. D. (2004). Inhibitor of apoptosis proteins: Translating basic knowledge into clinical practice. Cancer Research, 64, 7183–7190.

    Article  CAS  PubMed  Google Scholar 

  84. Nachmias, B., Ashhab, Y., & Ben-Yehuda, D. (2004). The inhibitor of apoptosis protein family (IAPs): An emerging therapeutic target in cancer. Seminars in Cancer Biology, 14, 231–243.

    Article  CAS  PubMed  Google Scholar 

  85. Wang, L., Luan, T., Zhou, S., et al. (2019). LncRNA HCP5 promotes triple negative breast cancer progression as a ceRNA to regulate BIRC3 by sponging miR-219a-5p. Cancer Medicine, 8, 4389–4403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Vu, T., Datta, P. K. (2017). Regulation of EMT in colorectal cancers: A culprit metastasis. Cancers9, 171.

    Article  PubMed Central  CAS  Google Scholar 

  87. Cantini, L., Bertoli, G., Cava, C., et al. (2019). Identification of microRNA clusters cooperatively acting on epithelial to mesenchymal transition in triple negative breast cancer. Nucleic Acids Research, 47, 2205–2215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ang, L., Guo, L., Wang, J., Huang, J., Lou, X., & Zhao, M. (2020). Oncolytic virotherapy armed with an engineered interfering lncRNA exhibits antitumor activity by blocking the epithelial mesenchymal transition in triple-negative breast cancer. Cancer Letters, 479, 42–53.

    Article  PubMed  CAS  Google Scholar 

  89. Chang-Qing, Y., Jie, L., Shi-Qi, Z., et al. (2020). Recent treatment progress of triple negative breast cancer. Nature Reviews. Drug Discovery, 151, 40–53.

    Google Scholar 

Download references

Funding

This research was supported by Zhejiang Provincial Public Benefit Technology Applied Research Project (LGF21C050001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianfeng Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Yue, Y., Fan, S. et al. Advances in Pathophysiology of Triple-Negative Breast Cancer: The Potential of lncRNAs for Clinical Diagnosis, Treatment, and Prognostic Monitoring. Mol Biotechnol 63, 1093–1102 (2021). https://doi.org/10.1007/s12033-021-00368-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00368-x

Keywords

Navigation