Skip to main content
Log in

The long non-coding RNAs (lncRNA) in the pathogenesis of gastric cancer cells: molecular mechanisms and involvement miRNAs

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A complex sequence of occurrences, including host genetic vulnerability, Helicobacter pylori infection, and other environmental variables, culminate in gastric cancer (GC). The development of several genetic and epigenetic changes in oncogenes and tumor suppressor genes causes dysregulation of several signaling pathways, which upsets the cell cycle and the equilibrium between cell division and apoptosis, leading to GC. Developments in computational biology and RNA-seq technology enable quick detection and characterization of long non-coding RNAs (lncRNAs). Recent studies have shown that long non-coding RNAs (lncRNAs) have multiple roles in the development of gastric cancer. These lncRNAs interact with molecules of protein, RNA, DNA, and/or combinations. This review article explores several gastric cancer-associated lncRNAs, such as ADAMTS9-AS2, UCA1, XBP-1, and LINC00152. These various lncRNAs could change GC cell apoptosis, migration, and invasion features in the tumor microenvironment. This review provides an overview of the most recent research on lncRNAs and GC cell apoptosis, migration, invasion, and drug resistance, focusing on studies conducted in cancer cells and healthy cells during differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Zou Y, Chen B (2021) Long non-coding RNA HCP5 in cancer. Clinica Chimica Acta. Int J Clin Chem 512:33–39

    CAS  Google Scholar 

  2. Zakutansky PM, Feng Y (2022) The long non-coding RNA GOMAFU in Schizophrenia: function, Disease Risk, and Beyond. Cells. ;11

  3. Yan H, Bu P (2021) Non-coding RNA in cancer. Essays Biochem 65:625–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sharma U, Barwal TS, Malhotra A, Pant N, Vivek, Dey D et al (2020) Long non-coding RNA TINCR as potential biomarker and therapeutic target for cancer. Life Sci 257:118035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Qian Y, Shi L, Luo Z (2020) Long non-coding RNAs in Cancer: implications for diagnosis, prognosis, and Therapy. Front Med 7:612393

    Article  Google Scholar 

  6. Kanwal F, Lu C (2019) A review on native and denaturing purification methods for non-coding RNA (ncRNA). J Chromatogr B 1120:71–79

    Article  CAS  Google Scholar 

  7. Chen B, Dragomir MP, Yang C, Li Q, Horst D, Calin GA (2022) Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduct Target Therapy 7:121

    Article  CAS  Google Scholar 

  8. Entezari M, Sadrkhanloo M, Rashidi M, Asnaf SE, Taheriazam A, Hashemi M et al (2022) Non-coding RNAs and macrophage interaction in tumor progression. Crit Rev Oncol/Hematol 173:103680

    Article  PubMed  Google Scholar 

  9. Jim MA, Pinheiro PS, Carreira H, Espey DK, Wiggins CL, Weir HK (2017) Stomach cancer survival in the United States by race and stage (2001-2009): findings from the CONCORD‐2 study. Cancer 123:4994–5013

    Article  PubMed  Google Scholar 

  10. Li X, Wu Z, Fu X, Han W (2014) lncRNAs: insights into their function and mechanics in underlying disorders. Mutat Research/Reviews Mutat Res 762:1–21

    Article  CAS  Google Scholar 

  11. Evans JR, Feng FY, Chinnaiyan AM (2016) The bright side of dark matter: lncRNAs in cancer. J Clin Investig 126:2775–2782

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kitagawa M, Kotake Y, Ohhata T (2012) Long non-coding RNAs involved in cancer development and cell fate determination. Curr Drug Targets 13:1616–1621

    Article  CAS  PubMed  Google Scholar 

  13. Bhat SA, Ahmad SM, Mumtaz PT, Malik AA, Dar MA, Urwat U et al (2016) Non-coding RNA Research

  14. Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M et al (2011) Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15INK4B tumor suppressor gene. Oncogene 30:1956–1962

    Article  CAS  PubMed  Google Scholar 

  15. Congrains A, Kamide K, Ohishi M, Rakugi H (2013) ANRIL: molecular mechanisms and implications in human health. Int J Mol Sci 14:1278–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Berghoff EG, Clark MF, Chen S, Cajigas I, Leib DE, Kohtz JD (2013) Evf2 (Dlx6as) lncRNA regulates ultraconserved enhancer methylation and the differential transcriptional control of adjacent genes. Development 140:4407–4416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ørom UA, Shiekhattar R (2011) Long non-coding RNAs and enhancers. Curr Opin Genet Dev 21:194–198

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bunch H, Lawney BP, Burkholder A, Ma D, Zheng X, Motola S et al (2016) RNA polymerase II promoter-proximal pausing in mammalian long non-coding genes. Genomics 108:64–77

    Article  CAS  PubMed  Google Scholar 

  19. Chen L-L (2016) Linking long non-coding RNA localization and function. Trends Biochem Sci 41:761–772

    Article  CAS  PubMed  Google Scholar 

  20. Caddle MS, Lussier RH, Heintz NH (1990) Intramolecular DNA triplexes, bent DNA and DNA unwinding elements in the initiation region of an amplified dihydrofolate reductase replicon. J Mol Biol 211:19–33

    Article  CAS  PubMed  Google Scholar 

  21. Abali EE, Skacel NE, Celikkaya H, Hsieh YC (2008) Regulation of human dihydrofolate reductase activity and expression. Vitamins Horm 79:267–292

    Article  CAS  Google Scholar 

  22. Reece LJ, Nichols R, Ogden RC, Howell EE (1991) Construction of a synthetic gene for an R-plasmid-encoded dihydrofolate reductase and studies on the role of the N-terminus in the protein. Biochemistry 30:10895–10904

    Article  CAS  PubMed  Google Scholar 

  23. Thomson DW, Dinger ME (2016) Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 17:272–283

    Article  CAS  PubMed  Google Scholar 

  24. Chen H, Du G, Song X, Li L (2017) Non-coding transcripts from enhancers: new insights into enhancer activity and gene expression regulation. Genom Proteom Bioinform 15:201–207

    Article  CAS  Google Scholar 

  25. Huang S-F, Peng X-F, Jiang L, Hu CY, Ye W-C (2021) LncRNAs as therapeutic targets and potential biomarkers for lipid-related diseases. Front Pharmacol 12:729745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pawson T, Scott JD (1997) Signaling through scaffold, anchoring, and adaptor proteins. Science 278:2075–2080

    Article  CAS  PubMed  Google Scholar 

  27. Dokland T (1999) Scaffolding proteins and their role in viral assembly. Cell Mol Life Sci CMLS 56:580–603

    Article  CAS  PubMed  Google Scholar 

  28. Kafasla P, Skliris A, Kontoyiannis DL (2014) Post-transcriptional coordination of immunological responses by RNA-binding proteins. Nat Immunol 15:492–502

    Article  CAS  PubMed  Google Scholar 

  29. Tang J, Ning R, Zeng B, Li Y (2016) Molecular evolution of PTEN pseudogenes in mammals. PLoS ONE 11:e0167851

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li W, Zhang T, Guo L, Huang L (2018) Regulation of PTEN expression by non-coding RNAs. J Experimental Clin Cancer Res 37:1–12

    Article  CAS  Google Scholar 

  31. Wu Y, Li L, Wang Q, Zhang L, He C, Wang X et al (2020) LINC00511 promotes lung squamous cell carcinoma proliferation and migration via inhibiting mir-150-5p and activating TADA1. Translational Lung Cancer Res 9:1138

    Article  CAS  Google Scholar 

  32. Chen J, Chen JG, Sun B, Wu J, Du C (2020) Integrative analysis of immune microenvironment-related CeRNA regulatory axis in gastric cancer. Math Biosci Eng 17:3953–3971

    Article  PubMed  Google Scholar 

  33. Foroughi K, Amini M, Atashi A, Mahmoodzadeh H, Hamann U, Manoochehri M (2018) Tissue-specific down-regulation of the long non-coding RNAs PCAT18 and LINC01133 in gastric cancer development. Int J Mol Sci 19:3881

    Article  PubMed  PubMed Central  Google Scholar 

  34. Baldini F, Calderoni M, Vergani L, Modesto P, Florio T, Pagano A (2021) An overview of long non-coding (lnc) RNAs in neuroblastoma. Int J Mol Sci 22:4234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mitra S (2019) Understanding the role of long non-coding RNAs in neuroblastoma development and progression

  36. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465:1033–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yoshimoto R, Mayeda A, Yoshida M, Nakagawa S (2016) MALAT1 long non-coding RNA in cancer. Biochimica et Biophysica Acta (BBA)-Gene Regulatory mechanisms. 1859:192–199

  38. Ouyang S, Zheng X, Zhou X, Chen Z, Yang X, Xie M (2017) LncRNA BCAR4 promotes colon cancer progression via activating Wnt/β-catenin signaling. Oncotarget 8:92815

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R et al (2007) Activation of p53 by MEG3 non-coding RNA. J Biol Chem 282:24731–24742

    Article  CAS  PubMed  Google Scholar 

  41. Sánchez Y, Segura V, Marín-Béjar O, Athie A, Marchese FP, González J et al (2014) Genome-wide analysis of the human p53 transcriptional network unveils a lncRNA tumour suppressor signature. Nat Commun 5:5812

    Article  PubMed  Google Scholar 

  42. Pandey GK, Mitra S, Subhash S, Hertwig F, Kanduri M, Mishra K et al (2014) The risk-associated long non-coding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation. Cancer Cell 26:722–737

    Article  CAS  PubMed  Google Scholar 

  43. Mourtada-Maarabouni M, Pickard M, Hedge V, Farzaneh F, Williams G (2009) GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 28:195–208

    Article  CAS  PubMed  Google Scholar 

  44. Cavallo F, Feldman DR, Barchi M (2013) Revisiting DNA damage repair, p53-mediated apoptosis and cisplatin sensitivity in germ cell tumors. Int J Dev Biol 57:273–280

    Article  CAS  PubMed  Google Scholar 

  45. Ni K, Huang Z, Zhu Y, Xue D, Jin Q, Zhang C et al (2021) The lncRNA ADAMTS9-AS2 regulates RPL22 to modulate TNBC Progression via Controlling the TGF-β signaling pathway. Front Oncol 11:654472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ren N, Jiang T, Wang C, Xie S, Xing Y, Piao D et al (2020) LncRNA ADAMTS9-AS2 inhibits gastric cancer (GC) development and sensitizes chemoresistant GC cells to cisplatin by regulating miR-223-3p/NLRP3 axis. Aging 12:11025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xue M, Chen W, Li X (2016) Urothelial cancer associated 1: a long non-coding RNA with a crucial role in cancer. J Cancer Res Clin Oncol 142:1407–1419

    Article  PubMed  Google Scholar 

  48. Horita K, Kurosaki H, Nakatake M, Ito M, Kono H, Nakamura T (2019) Long non-coding RNA UCA1 enhances sensitivity to oncolytic vaccinia virus by sponging miR-18a/miR-182 and modulating the Cdc42/filopodia axis in colorectal cancer. Biochem Biophys Res Commun 516:831–838

    Article  CAS  PubMed  Google Scholar 

  49. Cheng H, Sharen G, Wang Z, Zhou J (2021) LncRNA UCA1 enhances cisplatin resistance by regulating CYP1B1-mediated apoptosis via miR-513a-3p in human gastric cancer. Cancer Manage Res. :367–377

  50. Xu W, Wang C, Hua J (2021) X-box binding protein 1 (XBP1) function in diseases. Cell Biol Int 45:731–739

    Article  CAS  PubMed  Google Scholar 

  51. Clarke R, Cook KL, Hu R, Facey CO, Tavassoly I, Schwartz JL et al (2012) Endoplasmic reticulum stress, the unfolded protein response, autophagy, and the integrated regulation of breast cancer cell fate. Cancer Res 72:1321–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhou Y, Sha Z, Yang Y, Wu S, Chen H (2021) lncRNA NEAT1 regulates gastric carcinoma cell proliferation, invasion and apoptosis via the miR–500a–3p/XBP–1 axis. Mol Med Rep 24:1–10

    Article  Google Scholar 

  53. Guruharsha K, Kankel MW, Artavanis-Tsakonas S (2012) The notch signalling system: recent insights into the complexity of a conserved pathway. Nat Rev Genet 13:654–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang Z, Wang H (2020) lncRNA SNHG1 suppresses gastric cancer cell proliferation and promotes apoptosis via Notch1 pathway. J buon 25:302–307

    PubMed  Google Scholar 

  55. Hu R, Lu Z (2020) Long non–coding RNA HCP5 promotes prostate cancer cell proliferation by acting as the sponge of miR–4656 to modulate CEMIP expression. Oncol Rep 43:328–336

    CAS  PubMed  Google Scholar 

  56. Yin D, Lu X (2021) Silencing of long non-coding RNA HCP5 inhibits proliferation, invasion, migration, and promotes apoptosis via regulation of miR-299-3p/SMAD5 axis in gastric cancer cells. Bioengineered 12:225–239

    Article  CAS  PubMed  Google Scholar 

  57. Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M et al (2020) Guidelines and definitions for research on epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 21:341–352

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wu J, Liu T, Sun L, Zhang S, Dong G (2020) Long non-coding RNA SNHG4 promotes renal cell carcinoma tumorigenesis and invasion by acting as ceRNA to sponge mir-204-5p and upregulate RUNX2. Cancer Cell Int 20:1–14

    Article  Google Scholar 

  59. Wang S, Zhu W, Qiu J, Chen F (2021) lncRNA SNHG4 promotes cell proliferation, migration, invasion and the epithelial-mesenchymal transition process via sponging mir-204-5p in gastric cancer. Mol Med Rep 23:1

    Google Scholar 

  60. Zhu M-B, Chen L-P, Hu M, Shi Z, Liu Y-N (2019) Effects of lncRNA BANCR on endometriosis through ERK/MAPK pathway. Eur Rev Med Pharmacol Sci. ;23

  61. Shi Y, Sun H (2020) Down-regulation of lncRNA LINC00152 suppresses gastric cancer cell migration and invasion through inhibition of the ERK/MAPK signaling pathway. OncoTargets Therapy. :2115–2124

  62. Zheng W, Li J, Zhou X, Cui L, Wang Y (2020) The lncRNA XIST promotes proliferation, migration and invasion of gastric cancer cells by targeting miR-337. Arab J Gastroenterol 21:199–206

    Article  PubMed  Google Scholar 

  63. Allavena P, Sica A, Garlanda C, Mantovani A (2008) The Yin-Yang of tumor‐associated macrophages in neoplastic progression and immune surveillance. Immunol Rev 222:155–161

    Article  CAS  PubMed  Google Scholar 

  64. Xie C, Guo Y, Lou S (2020) LncRNA ANCR promotes invasion and migration of gastric cancer by regulating FoxO1 expression to inhibit macrophage M1 polarization. Dig Dis Sci 65:2863–2872

    Article  CAS  PubMed  Google Scholar 

  65. Ayob AZ, Ramasamy TS (2018) Cancer stem cells as key drivers of tumour progression. J Biomed Sci 25:1–18

    Article  Google Scholar 

  66. Zhang X, Hua R, Wang X, Huang M, Gan L, Wu Z et al (2016) Identification of stem-like cells and clinical significance of candidate stem cell markers in gastric cancer. Oncotarget 7:9815

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yao J, Yang Z, Yang J, Wang Z-G, Zhang Z-Y (2021) Long non-coding RNA FEZF1-AS1 promotes the proliferation and metastasis of hepatocellular carcinoma via targeting miR-107/Wnt/β-catenin axis. Aging 13:13726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Song B, Yan J, Liu C, Zhou H, Zheng Y (2015) Tumor suppressor role of mir-363-3p in gastric cancer. Med Sci Monitor: Int Med J Experimental Clin Res 21:4074

    Article  CAS  Google Scholar 

  69. Hui Y, Yang Y, Li D, Wang J, Di M, Zhang S et al (2020) LncRNA FEZF1-AS1 modulates cancer stem cell properties of human gastric cancer through miR-363-3p/HMGA2. Cell Transplant 29:0963689720925059

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wang F, Tang C, Xu D, Tang Y, Jiang Y, Gao X et al (2020) LncRNA ADAMTS9-AS2 suppresses the proliferation of gastric cancer cells and the tumorigenicity of cancer stem cells through regulating SPOP. J Cell Mol Med 24:4830–4838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liang G, He Z (2022) High mobility group proteins in sepsis. Front Immunol 13:911152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xia Y, Lv J, Jiang T, Li B, Li Y, He Z et al (2021) CircFAM73A promotes the cancer stem cell-like properties of gastric cancer through the miR-490-3p/HMGA2 positive feedback loop and HNRNPK-mediated β-catenin stabilization. J Experimental Clin Cancer Res 40:1–24

    Article  Google Scholar 

  73. Du T, Zhang B, Zhang S, Jiang X, Zheng P, Li J et al (2016) Decreased expression of long non-coding RNA WT1-AS promotes cell proliferation and invasion in gastric cancer. Biochimica et Biophysica Acta (BBA)-Molecular basis of Disease. 1862:12–19

  74. Zhang X, Jin M, Liu S, Zang M, Hu L, Du T et al (2023) The roles and molecular mechanisms of long non-coding RNA WT1-AS in the maintenance and development of gastric cancer stem cells. Heliyon. ;9

  75. Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y (2014) Immunobiology of mesenchymal stem cells. Cell Death Differ 21:216–225

    Article  CAS  PubMed  Google Scholar 

  76. Serra D, Mera P, Malandrino MI, Mir JF, Herrero L (2013) Mitochondrial fatty acid oxidation in obesity. Antioxid Redox Signal 19:269–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhao L, Hantash BM (2011) TGF-β1 regulates differentiation of bone marrow mesenchymal stem cells. Vitamins Horm 87:127–141

    Article  CAS  Google Scholar 

  78. He W, Liang B, Wang C, Li S, Zhao Y, Huang Q et al (2019) MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer. Oncogene 38:4637–4654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2023/R/1445).

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

R.S, S.A and A.H: Conceptualization, Writing - Original Draft. S.A and P.A: Conceptualization, Writing - Original Draft, Resources. A.H: Supervision, Project administration. T.A, M.J and A.A: Conceptualization, Writing - Review and Editing.

Corresponding author

Correspondence to Ahmad Hammoud.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics statement

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh, R.O., Al-Hawary, S.I.S., Hammoud, A. et al. The long non-coding RNAs (lncRNA) in the pathogenesis of gastric cancer cells: molecular mechanisms and involvement miRNAs. Mol Biol Rep 51, 615 (2024). https://doi.org/10.1007/s11033-024-09546-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09546-x

Keywords

Navigation