Skip to main content

Advertisement

Log in

An Overview on the Enhancement of Enantioselectivity and Stability of Microbial Epoxide Hydrolases

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Epoxide hydrolases (EHs; 3.3.2.x) catalyze the enantioselective ring opening of racemic epoxides to the corresponding enantiopure vicinal diols and remaining equivalent unreacted epoxides. These epoxides and diols are used for the synthesis of chiral drug intermediates. With an upsurge in the methods for identification of novel microbial EHs, a lot of EHs have been discovered and utilized for kinetic resolution of racemic epoxides. However, there is still a constraint on the account of limited EHs being successfully applied on the preparative scale for industrial biotransformations. This limitation has to be overcome before application of identified functional EHs on large scale. Many strategies such as optimizing reaction media, immobilizing EHs and laboratory-scale directed evolution of EHs have been adopted for enhancing the industrial potential of EHs. In this review, these approaches have been highlighted which can serve as a pathway for the enrichment of already identified EHs for their application on an industrial scale in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EHs:

Epoxide hydrolase

ILs:

Ionic liquids

DESs :

Deep eutectic solvents

DMSO:

Dimethylsulfoxide

HBDs:

Hydrogen bond donors

EDA:

Ethylenediamine

IDA:

Iminodiacetic acid

CPG:

Calcium pectate gelled

SA:

Sodium alginate

CS:

Cellulose sulfate

PMCG:

Poly (methylene-co-guanidine)

Fmoc-FF:

Fluorenylmethoxycarbonyl diphenylalanine

PEI:

Polymer, polyethyleneimine

CLEAS:

Cross-linked enzyme aggregates

epPCR:

Error-prone polymerase chain reaction

PCR:

Polymerase chain reaction

ISM:

Iterative saturation mutagenesis

CAST:

Combinatorial Active Site Saturation Test

B-FIT:

B-Factor Iterative Test

ASRA:

Adaptive substituent reordering algorithm

FRESCO:

Framework for Rapid Enzyme Stabilization by Computational Libraries

References

  1. Lin, H., Liu, J.-Y., Wang, H.-B., Ahmed, A. A. Q., & Wu, Z.-L. (2011). Biocatalysis as an alternative for the production of chiral epoxides: a comparative review. Journal of Molecular Catalysis. B, Enzymatic, 72(3–4), 77–89.

    Article  CAS  Google Scholar 

  2. Breuer, M., Ditrich, K., Habicher, T., Hauer, B., Keßeler, M., Stürmer, R., et al. (2004). Industrial methods for the production of optically active intermediates. Angewandte Chemie Int Ed, 43(7), 788–824.

    Article  CAS  Google Scholar 

  3. Wohlgemuth, R. (2010). Biocatalysis-key to sustainable industrial chemistry. Current Opinion in Biotechnology, 21(6), 713–724.

    Article  CAS  Google Scholar 

  4. Lin, H., Liu, Y., & Wu, Z.-L. (2011). Asymmetric epoxidation of styrene derivatives by styrene monooxygenase from Pseudomonas sp. LQ26: effects of α- and β-substituents. Tetrahedron Asymmetry, 22(2), 134–137.

    Article  CAS  Google Scholar 

  5. Xue, F., Liu, Z.-Q., Zou, S.-P., Wan, N.-W., Zhu, W.-Y., Zhu, Q., et al. (2014). A novel enantioselective epoxide hydrolase from Agromyces mediolanus ZJB120203: cloning, characterization and application. Process Biochemistry, 49(3), 409–417.

    Article  CAS  Google Scholar 

  6. Jimenez, D. J., Dini-Andreote, F., Ottoni, J. R., de Oliveira, V. M., van Elsas, J. D., & Andreote, F. D. (2015). Compositional profile of α/β-hydrolase fold proteins in mangrove soil metagenomes: prevalence of epoxide hydrolases and haloalkane dehalogenases in oil-contaminated sites. Microbial Biotechnology, 8(3), 604–613.

    Article  CAS  Google Scholar 

  7. Saini, P., Wani, S. I., Kumar, R., Chhabra, R., Chimni, S. S., & Sareen, D. (2014). Trigger factor assisted folding of the recombinant epoxide hydrolases identified from C. pelagibacter and S. nassauensis. Protein Expression and Purification, 104C, 71–84.

    Article  CAS  Google Scholar 

  8. van Loo, B., Kingma, J., Arand, M., Wubbolts, M. G., & Janssen, D. B. (2006). Diversity and biocatalytic potential of epoxide hydrolases identified by genome analysis. Applied and Environmental Microbiology, 72(4), 2905–2917.

    Article  CAS  Google Scholar 

  9. Lee, E. Y., & Shuler, M. L. (2007). Molecular engineering of epoxide hydrolase and its application to asymmetric and enantioconvergent hydrolysis. Biotechnology and Bioengineering, 98(2), 318–327.

    Article  CAS  Google Scholar 

  10. de Vries, E. J., & Janssen, D. B. (2003). Biocatalytic conversion of epoxides. Current Opinion in Biotechnology, 14(4), 414–420.

    Article  CAS  Google Scholar 

  11. Choi, W. J., & Choi, C. Y. (2005). Production of chiral epoxides: epoxide hydrolase-catalyzed enantioselective hydrolysis. Biotechnology and Bioprocess Engineering, 10(3), 167–179.

    Article  CAS  Google Scholar 

  12. Dauvrin, T., Couthuin, Deslee, A., & Braives. (2002). Epoxide Hydrolase, Patent Publication No. US 6,379,938 B1. 30 April, 2002.

  13. Arand, M., Archelas, A. R., Baratti, J., & Furstoss, R. (2006). Epoxide hydrolase of Aspergillus origin, Patent Publication No. US 7,060,477 B2. 13 June, 2006.

  14. Zocher, F., Enzelberger, M., Schmid, R. D., Wohleben, W., & Hauer, B. (2004). Epoxide hydrolase from Streptomyces, Patent Publication No. US 6,828,115 B1. 7 December, 2004.

  15. Zhao, L., Mathur, E. J., Weiner, D., Richardson, T., Milan, A., Burk, M. J., … Short, J. M. (2005). Epoxide hydrolases, nucleic acids encoding them and methods of making and using them. patent Publication No. US 6,979,733 B2. 27 December, 2005.

  16. Chartrain, M. M., Senanayake, C. H., Rosazza, J. P. N., & Zhang, J. (1998). Resolution of racemic indene oxide to yield (1S,2R)-indene oxide using Diplodia gossipina. Patent Publication No. US 5,849,568 A. 15 December, 1998.

  17. Spelberg, J. H. L., Rink, R., Haren, R. M. K., & Roden, D. B. J. (2002). Enantioselective epoxide hydrolases and genes encoding these. Patent Publication No. US 6,387,668 B1. 14 May, 2002.

  18. Kim, S.-J., Kang, S.-G., Hwang, Y.-O., Woo, J.-H., Cho, J.-C., Kang, J.-H., & Kwon, K.-K. (2011). Enantioselective epoxide hydrolase and method for preparing and enantiopure epoxide using the same, Patent Publication No. US 8,030,048 B2. 4 October, 2011.

  19. Kamal, A., Khanna, R., Kumar, G., Shaik, A. B., & Kumar, M. S. (2015). Novel bacterial strain of Achromobacter sp. MTCC 5605 and a highly enantioselective epoxide hydrolase isolated therefrom, Patent Publication No. US 9,150,840 B2. 10 June, 2015.

  20. Jinyou, Z., Reddy, J., Senanayake, C., & Chartrain, M. (1995). Chiral bio-resolution of racemic indene oxide by fungal epoxide hydrolases. Journal of Fermentation and Bioengineering, 80(3), 244–246.

    Article  Google Scholar 

  21. Cleij, M., Archelas, A., & Furstoss, R. (1999). Microbiological transformations 43. Epoxide hydrolases as tools for the synthesis of enantiopure-methylstyrene oxides: a new and efficient synthesis of (S)-Ibuprofen. Journal of Organic Chemistry, 64(14), 5029–5035.

    Article  CAS  Google Scholar 

  22. Orru, R. V. A., Osprian, I., Kroutil, W., & Faber, K. (1998). An efficient large-scale synthesis of (R)-(–)-mevalonolactone using simple biological and chemical catalysts. Synthesis, 9, 1259–1263.

    Article  Google Scholar 

  23. Manoj, K. M., Archelas, A., Baratti, J., & Furstoss, R. (2001). Microbiological transformations. Part 45: a green chemistry preparative scale synthesis of enantiopure building blocks of Eliprodil: elaboration of a high substrate concentration epoxide hydrolase-catalyzed hydrolytic kinetic resolution process. Tetrahedron, 57(4), 695–701.

    Article  CAS  Google Scholar 

  24. Morisseau, C., Baratti, J., Zylber, J., Archelas, A., & Furstoss, R. (1997). Microbiological transformations 37. An enantioconvergent synthesis of the β-blocker (R) -Nifenalol® using a combined chemoenzymatic approach. Tetrahedron, 53(28), 9707–9714.

    Article  Google Scholar 

  25. Li, C., Liu, Q., Ding, D., Cui, H., Ji, A., & Qu, Y. (2003). Epoxide hydrolase-catalyzed resolution of ethyl 3-phenylglycidate using whole cells of Pseudomonas sp. BZS21. Biotechnology Letters, 25(24), 2113–2116.

    Article  CAS  Google Scholar 

  26. Choi, W. J., Puah, S. M., Tan, L. L., & Ng, S. S. (2008). Production of (R)-ethyl-3,4-epoxybutyrate by newly isolated Acinetobacter baumannii containing epoxide hydrolase. Applied Microbiology and Biotechnology, 79(1), 61–67.

    Article  CAS  Google Scholar 

  27. Chen, X.-J., Archelas, A., & Furstoss, R. (1993). Microbiological Transformations. 27. the first examples for preparative-scale enantioselective or diastereoselective epoxide hydrolyses using microorganisms. an unequivocal access to all four bisabolol stereoisomers. Journal of Organic Chemistry, 58(20), 5528–5532.

    Article  CAS  Google Scholar 

  28. Jia, X., Wang, Z., & Li, Z. (2008). Preparation of (S)-2-,3-, and 4-chlorostyrene oxides with the epoxide hydrolase from Sphingomonas sp. HXN-200. Tetrahedron Asymmetry, 19(4), 407–415.

    Article  CAS  Google Scholar 

  29. Chen, L., Shen, H., Wei, C., & Zhu, Q. (2013). Bioresolution of (R)-glycidyl azide by Aspergillus niger ZJUTZQ208: a new and concise synthon for chiral vicinal amino alcohols. Applied Microbiology and Biotechnology, 97(6), 2609–2616.

    Article  CAS  Google Scholar 

  30. Kong, X.-D., Yuan, S., Li, L., Chen, S., Xu, J.-H., & Zhou, J. (2014). Engineering of an epoxide hydrolase for efficient bioresolution of bulky pharmaco substrates. Proceedings of the National Academy of Sciences of the United States of America, 111(44), 15717–15722.

    Article  CAS  Google Scholar 

  31. Choi, W. J. (2009). Biotechnological production of enantiopure epoxides by enzymatic kinetic resolution. Applied Microbiology and Biotechnology, 84(2), 239–247.

    Article  CAS  Google Scholar 

  32. Krishna, S. H. (2002). Developments and trends in enzyme catalysis in nonconventional media. Biotechnology Advances, 20(3–4), 239–267.

    Article  Google Scholar 

  33. Adamczak, M., & Krishna, S. H. (2004). Strategies for improving enzymes for efficient biocatalysis. Food Technol. Biotechnol., 42(4), 251–264.

    CAS  Google Scholar 

  34. Laane, C., Boeren, S., Vos, K., & Veeger, C. (1987). Rules for optimization of biocatalysis in organic solvents. Biotechnology and Bioengineering, 30(1), 81–87.

    Article  CAS  Google Scholar 

  35. Nellaiah, H., Morisseau, C., Archelas, A., Furstoss, R., & Baratti, J. C. (1996). Enantioselective hydrolysis of p-nitrostyrene oxide by an epoxide hydrolase preparation from Aspergillus niger. Biotechnology and Bioengineering, 49(1), 70–77.

    Article  CAS  Google Scholar 

  36. Choi, W. J., Choi, C. Y., De Bont, J. A. M., & Weijers, C. A. G. M. (1999). Resolution of 1,2-epoxyhexane by Rhodotorula glutinis using a two-phase membrane bioreactor. Applied Microbiology and Biotechnology, 53(1), 7–11.

    Article  CAS  Google Scholar 

  37. Beloti, L. L., Costa, B. Z., Toledo, M. A. S., Santos, C. A., Crucello, A., Fávaro, M. T. P., et al. (2013). A novel and enantioselective epoxide hydrolase from Aspergillus brasiliensis CCT 1435: Purification and characterization. Protein Expression and Purification, 91(2), 175–183.

    Article  CAS  Google Scholar 

  38. Filho, M. V., Stillger, T., Muller, M., Liese, A., & Wandrey, C. (2003). Is logP a convenient criterion to guide the choice of solvents for biphasic enzymatic reactions? Angewandte Chemie Int Ed, 42(26), 2993–2996.

    Article  CAS  Google Scholar 

  39. Wenjing, C., Wenyong, L., Xiaoting, W., & Minhua, Z. (2011). Asymmetric hydrolysis of styrene oxide catalyzed by Mung bean epoxide hydrolase in organic solvent/buffer biphasic system. Chinese Journal of Catalysis, 32(9), 1557–1563.

    Google Scholar 

  40. Zaks, A., & Klibanov, M. (1988). Enzymatic catalysis in nonaqueous solvents. Journal of Biological Chemistry, 263(7), 3194–3201.

    CAS  Google Scholar 

  41. Lee, E. Y. (2007). Enantioselective hydrolysis of epichlorohydrin in organic solvents using recombinant epoxide hydrolase. Journal of Industrial and Engineering Chemistry, 13(1), 159–162.

    CAS  Google Scholar 

  42. Karboune, S., Archelas, A., & Baratti, J. (2006). Properties of epoxide hydrolase from Aspergillus niger for the hydrolytic kinetic resolution of epoxides in pure organic media. Enzym. Microb. Technol., 39(2), 318–324.

    Article  CAS  Google Scholar 

  43. Lotter, J., Botes, A. L., van Dyk, M. S., & Breytenbach, J. C. (2004). Correlation between the physicochemical properties of organic solvents and their biocompatibility toward epoxide hydrolase activity in whole-cells of a yeast. Rhodotorula sp. Biotechnol. Lett., 26(15), 1191–1195.

    Article  CAS  Google Scholar 

  44. Hwang, S., Choi, C. Y., & Lee, E. Y. (2008). Enantioconvergent bioconversion of p-chlorostyrene oxide to (R)-p-chlorophenyl-1,2-ethandiol by the bacterial epoxide hydrolase of Caulobacter crescentus. Biotechnology Letters, 30(7), 1219–1225.

    Article  CAS  Google Scholar 

  45. Karboune, S., Archelas, A., & Baratti, J. C. (2010). Free and immobilized Aspergillus niger epoxide hydrolase-catalyzed hydrolytic kinetic resolution of racemic p-chlorostyrene oxide in a neat organic solvent medium. Process Biochemistry, 45(2), 210–216.

    Article  CAS  Google Scholar 

  46. Jin, H.-X., Hu, Z.-C., & Zheng, Y.-G. (2012). Enantioselective hydrolysis of epichlorohydrin using whole Aspergillus niger ZJB-09173 cells in organic solvents. Journal of Biosciences, 37(4), 695–702.

    Article  CAS  Google Scholar 

  47. Zhao, W., Kotik, M., Iacazio, G., & Archelas, A. (2015). Enantioselective bio-hydrolysis of various racemic and meso aromatic epoxides using the recombinant epoxide hydrolase Kau2. Advanced Synthesis & Catalysis, 357(8), 1895–1908.

    Article  CAS  Google Scholar 

  48. Baldascini, H., & Janssen, D. B. (2005). Interfacial inactivation of epoxide hydrolase in a two-liquid-phase system. Enyzme and Microbial Technology, 36(2–3), 285–293.

    Article  CAS  Google Scholar 

  49. Baldascini, H., Ganzeveld, K. J., Janssen, D. B., & Beenackers, A. A. C. M. (2001). Effect of mass transfer limitations on the enzymatic kinetic resolution of epoxides in a two-liquid-phase system. Biotechnology and Bioengineering, 73(1), 44–54.

    Article  CAS  Google Scholar 

  50. Simeó, Y., & Faber, K. (2006). Selectivity enhancement of enantio- and stereo-complementary epoxide hydrolases and chemo-enzymatic deracemization of (±)-2-methylglycidyl benzyl ether. Tetrahedron Asymmetry, 17(3), 402–409.

    Article  CAS  Google Scholar 

  51. Kim, H. S., Lee, O. K., Hwang, S., Kim, B. J., & Lee, E. Y. (2008). Biosynthesis of (R)-phenyl-1,2-ethanediol from racemic styrene oxide by using bacterial and marine fish epoxide hydrolases. Biotechnology Letters, 30(1), 127–133.

    Article  CAS  Google Scholar 

  52. Salameh, M. A., & Wiegel, J. (2010). Effects of detergents on activity, thermostability and aggregation of two alkalithermophilic lipases from Thermosyntropha lipolytica. Open Biochemistry Journal, 4, 22–28.

    Article  CAS  Google Scholar 

  53. Mogensen, J. E., Sehgal, P., & Otzen, D. E. (2005). Activation, inhibition, and destabilization of Thermomyces lanuginosus lipase by detergents. Biochemistry, 44(5), 1719–1730.

    Article  CAS  Google Scholar 

  54. Gong, P., Xu, J., Tang, Y., & Wu, H. (2003). Improved catalytic performance of Bacillus megaterium epoxide hydrolase in a medium containing Tween-80. Biotechnology Progress, 19(2), 652–654.

    Article  CAS  Google Scholar 

  55. Kroutil, W., Genzel, Y., Pietzsch, M., Syldatk, C., & Faber, K. (1998). Purification and characterization of a highly selective epoxide hydrolase from Nocardia sp. EH1. Journal of Biotechnology, 61(1–2), 143–150.

    Article  CAS  Google Scholar 

  56. van Rantwijk, F., & Sheldon, R. A. (2007). Biocatalysis in ionic liquids. Chemical Reviews, 107(6), 2757–2785.

    Article  CAS  Google Scholar 

  57. Chiappea, C., Leandria, E., Hammock, B. D., & Morisseau, C. (2007). Effect of ionic liquids on epoxide hydrolase-catalyzed synthesis of chiral 1,2-diols. Green Chemistry, 9(2), 162–168.

    Article  Google Scholar 

  58. Gorke, J., Srienc, F., & Kazlauskas, R. (2010). Toward advanced ionic liquids. Polar, enzyme-friendly solvents for biocatalysis. Biotechnol. Bioprocess Engineering, 15(1), 40–53.

    Article  CAS  Google Scholar 

  59. Dominguez de Maria, P., & Maugeri, Z. (2011). Ionic liquids in biotransformations: from proof-of-concept to emerging deep-eutectic-solvents. Current Opinion in Chemical Biology, 15(2), 220–225.

    Article  CAS  Google Scholar 

  60. Dominguez de Maria, P. (2008). “Nonsolvent” applications of ionic liquids in biotransformations and organocatalysis. Angewandte Chemie Int Ed, 47(37), 6960–6968.

    Article  CAS  Google Scholar 

  61. Park, S., & Kazlauskas, R. J. (2003). Biocatalysis in ionic liquids- advantages beyond green technology. Current Opinion in Biotechnology, 14(4), 432–437.

    Article  CAS  Google Scholar 

  62. Kaar, J. L., Jesionowski, A. M., Berberich, J. A., Moulton, R., & Russell, A. J. (2003). Impact of ionic liquid physical properties on lipase activity and stability. Journal of the American Chemical Society, 125(14), 4125–4131.

    Article  CAS  Google Scholar 

  63. Wells, A. S., & Coombe, V. T. (2006). On the freshwater ecotoxicity and biodegradation properties of some common ionic liquids. Organic Process Research & Development, 10(4), 794–798.

    Article  CAS  Google Scholar 

  64. Chiappe, C., Leandri, E., Lucchesi, S., Pieraccini, D., Hammock, B. D., & Morisseau, C. (2004). Biocatalysis in ionic liquids: the stereoconvergent hydrolysis of trans-β-methylstyrene oxide catalyzed by soluble epoxide hydrolase. Journal of Molecular Catalysis. B, Enzymatic, 27(4–6), 243–248.

    Article  CAS  Google Scholar 

  65. Chen, W., Lou, W., Yu, C., Wu, H., Zong, M., & Smith, T. J. (2012). Use of hydrophilic ionic liquids in a two-phase system to improve Mung bean epoxide hydrolases-mediated asymmetric hydrolysis of styrene oxide. Journal of Biotechnology, 162(2–3), 183–190.

    Article  CAS  Google Scholar 

  66. Chen, W.-J., Lou, W.-Y., & Zong, M.-H. (2012). Efficient asymmetric hydrolysis of styrene oxide catalyzed by Mung bean epoxide hydrolases in ionic liquid-based biphasic systems. Bioresource technology, 115, 58–62.

    Article  CAS  Google Scholar 

  67. Matsumoto, M., Sugimoto, T., Ishiguro, Y., Yamaguchi, H., & Kondo, K. (2014). Effect of organic solvents and ionic liquids on resolution of 2-epoxyhexane by whole cells of Rhodotorula glutinis in a two-liquid phase system. Journal of Chemical Technology and Biotechnology, 89(4), 522–527.

    Article  CAS  Google Scholar 

  68. Xu, P., Zheng, G.-W., Du, P.-X., Zong, M.-H., & Lou, W.-Y. (2015). Whole-cell biocatalytic processes with ionic liquids. ACS Sustainable Chemistry & Engineering, 4(2), 371–386.

    Article  CAS  Google Scholar 

  69. Zhao, H. (2010). Methods for stabilizing and activating enzymes in ionic liquids-a review. Journal of Chemical Technology and Biotechnology, 85(7), 891–907.

    Article  CAS  Google Scholar 

  70. Yu, C., Wei, P., Li, X., Zong, M., & Lou, W. (2014). Using ionic liquid in a biphasic system to improve asymmetric hydrolysis of styrene oxide catalyzed by cross-linked enzyme aggregates (CLEAs) of Mung bean epoxide. hydrolases. Industrial and Engineering Chemistry Research, 53(19), 7923–7930.

    Article  CAS  Google Scholar 

  71. Yang, Z., & Pan, W. (2005). Ionic liquids: green solvents for nonaqueous biocatalysis. Enyzme and Microbial Technology, 37(1), 19–28.

    Article  CAS  Google Scholar 

  72. Naushad, M., Alothman, Z. A., Khan, A. B., & Ali, M. (2012). Effect of ionic liquid on activity, stability, and structure of enzymes: a review. International Journal of Biological Macromolecules, 51(4), 555–560.

    Article  CAS  Google Scholar 

  73. Patel, R., Kumari, M., & Khan, A. B. (2014). Recent advances in the applications of ionic liquids in protein stability and activity: a review. Applied Biochemistry and Biotechnology, 172(8), 3701–3720.

    Article  CAS  Google Scholar 

  74. Clouthier, C. M., & Pelletier, J. N. (2012). Expanding the organic toolbox: a guide to integrating biocatalysis in synthesis. Chemical Society Reviews, 41(4), 1585–1605.

    Article  CAS  Google Scholar 

  75. Abbott, A. P., Harris, R. C., & Ryder, K. S. (2007). Application of hole theory to define ionic liquids by their transport properties. J. Phys. Chem. B, 111(18), 4910–4913.

    Article  CAS  Google Scholar 

  76. Seddon, K. R., Stark, A., & Torres, M. (2000). Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure and Applied Chemistry, 72(12), 2275–2287.

    Article  CAS  Google Scholar 

  77. Huang, Z.-L., Wu, B.-P., Wen, Q., Yang, T.-X., & Yang, Z. (2014). Deep eutectic solvents can be viable enzyme activators and stabilizers. Journal of Chemical Technology and Biotechnology, 89(12), 1975–1981.

    Article  CAS  Google Scholar 

  78. Lindberg, D., de la Fuente Revenga, M., & Widersten, M. (2010). Deep eutectic solvents (DESs) are viable cosolvents for enzyme-catalyzed epoxide hydrolysis. Journal of Biotechnology, 147(3–4), 169–1671.

    Article  CAS  Google Scholar 

  79. Gorke, J. T., Srienc, F., & Kazlauskas, R. J. (2008). Hydrolase-catalyzed biotransformations in deep eutectic solvents. Chemical Communications, 14(10), 1235–1237.

    Article  CAS  Google Scholar 

  80. Monhemi, H., Housaindokht, R., & Moosavi-movahedi, A. (2014). How a protein can remain stable in a solvent with high content of urea: insights from molecular dynamics simulation of Candida antarctica lipase B in urea: choline chloride deep eutectic solvent. Physical Chemistry Chemical Physics: PCCP, 16(28), 14882–14893.

    Article  CAS  Google Scholar 

  81. Gutiérrez, M. C., Ferrer, M. L., Yuste, L., Rojo, F., & del Monte, F. (2010). Bacteria incorporation in deep-eutectic solvents through freeze- drying. Angewandte Chemie Int Ed, 49(12), 2158–2162.

    Article  CAS  Google Scholar 

  82. Hayyan, M., Hashim, M. A., Hayyan, A., Al-Saadi, M. A., AlNashef, I. M., Mirghani, M. E. S., et al. (2013). Are deep eutectic solvents benign or toxic? Chemosphere, 90(7), 2193–2195.

    Article  CAS  Google Scholar 

  83. Hayyan, M., Looi, C. Y., Hayyan, A., Wong, W. F., & Hashim, M. A. (2015). In vitro and in vivo toxicity profiling of ammonium-based deep eutectic solvents. PLoS ONE, 10(2), e0117934.

    Article  CAS  Google Scholar 

  84. Smith, E. L., Abbott, A. P., & Ryder, K. S. (2014). Deep eutectic solvents (DESs) and their applications. Chemical Reviews, 114(21), 11060–11082.

    Article  CAS  Google Scholar 

  85. Rodrigues, R. C., Ortiz, C., & Ferna, R. (2013). Modifying enzyme activity and selectivity by immobilization. Chemical Society Reviews, 42(15), 6290–6307.

    Article  CAS  Google Scholar 

  86. Mateo, C., Palomo, J. M., Fernandez-lorente, G., Guisan, J. M., & Fernandez-lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilisation techniques. Enyzme and Microbial Technology, 40(6), 1451–1463.

    Article  CAS  Google Scholar 

  87. Hanefeld, U., & Magner, E. (2009). Understanding enzyme immobilisation. Chemical Society Reviews, 38(2), 453–468.

    Article  CAS  Google Scholar 

  88. Garcia-Galan, C., Berenguer-Murcia, Á., Fernandez-Lafuente, R., & Rodrigues, R. C. (2011). Potential of different enzyme immobilization strategies to improve enzyme performance. Advanced Synthesis & Catalysis, 353(16), 2885–2904.

    Article  CAS  Google Scholar 

  89. Zhang, D.-H., Yuwen, L.-X., & Peng, L.-J. (2013). Parameters affecting the performance of immobilized enzyme. J. Chem., 7.

  90. Mateo, C., Fernandez-Lafuente, R., Archelas, A., Guisan, J. M., & Furstoss, R. (2007). Preparation of a very stable immobilized Solanum tuberosum epoxide hydrolase. Tetrahedron Asymmetry, 18(10), 1233–1238.

    Article  CAS  Google Scholar 

  91. Bao, W., Pan, H., Zhang, Z., Cheng, Y., Xie, Z., & Zhang, J. (2015). Isolation of the stable strain Labrys sp. BK-8 for L (+)-tartaric acid production. Journal of Bioscience and Bioengineering, 119(1), 538–542.

    Article  CAS  Google Scholar 

  92. Yildirim, D., Tukel, S. S., Alptekin, O., & Alagoz, D. (2013). Immobilized Aspergillus niger epoxide hydrolases: cost-effective biocatalysts for the preparation of enantiopure styrene oxide, propylene oxide and epichlorohydrin. Journal of Molecular Catalysis. B, Enzymatic, 88, 84–90.

    Article  CAS  Google Scholar 

  93. Jin, H.-X., Liu, Z.-Q., Hu, Z.-C., & Zheng, Y.-G. (2013). Production of (R)-epichlorohydrin from 1,3-dichloro-2-propanol by two-step biocatalysis using haloalcohol dehalogenase and epoxide hydrolase in two-phase system. Biochemical Engineering Journal, 74, 1–7.

    Article  CAS  Google Scholar 

  94. Kroutil, W., Orru, R. V. A., & Faber, K. (1998). Stabilization of Nocardia EH1 epoxide hydrolase by immobilization. Biotechnology Letters, 20(4), 373–377.

    Article  CAS  Google Scholar 

  95. Karboune, S., Amourache, L., Nellaiah, H., Morisseau, C., & Baratti, J. (2001). Immobilization of the epoxide hydrolase from Aspergillus niger. Biotechnology Letters, 23(19), 1633–1639.

    Article  CAS  Google Scholar 

  96. Mateo, C., Archelas, A., Fernandez-lafuente, R., Guisan, M., Furstoss, R., Eda, E. C., et al. (2003). Enzymatic transformations. Immobilized A. niger epoxide hydrolase as a novel biocatalytic tool for repeated-batch hydrolytic kinetic resolution of epoxides. Organic & Biomolecular Chemistry, 1(15), 2739–2743.

    Article  CAS  Google Scholar 

  97. Karboune, S., Archelas, A., Furstoss, R., & Baratti, J. (2005). Immobilization of epoxide hydrolase from Aspergillus niger onto DEAE-cellulose: enzymatic properties and application for the enantioselective resolution of a racemic epoxide. Journal of Molecular Catalysis. B, Enzymatic, 32(5–6), 175–183.

    Article  CAS  Google Scholar 

  98. Petri, A., Marconcini, P., & Salvadori, P. (2005). Efficient immobilization of epoxide hydrolase onto silica gel and use in the enantioselective hydrolysis of racemic para-nitrostyrene oxide. Journal of Molecular Catalysis. B, Enzymatic, 32(5–6), 219–224.

    Article  CAS  Google Scholar 

  99. Yildirim, D., Tükel, S. S., Alagöz, D., & Alptekin, O. (2011). Preparative-scale kinetic resolution of racemic styrene oxide by immobilized epoxide hydrolase. Enyzme and Microbial Technology, 49(6–7), 555–559.

    Article  CAS  Google Scholar 

  100. Katchalski-katzir, E., & Kraemer, D. M. (2000). Eupergit® C, a carrier for immobilization of enzymes of industrial potential. Journal of Molecular Catalysis. B, Enzymatic, 10(1–3), 157–176.

    Article  CAS  Google Scholar 

  101. Bu, M., Vikartovsk, A., Lac, I., Koll, G., & Brygin, M. (2005). Immobilization of a whole-cell epoxide-hydrolyzing biocatalyst in sodium alginate − cellulose sulfate − poly(methylene-co-guanidine) capsules using a controlled encapsulation process. Enyzme and Microbial Technology, 36(1), 118–126.

    Article  CAS  Google Scholar 

  102. Huang, R., Wu, M., Goldman, M. J., & Li, Z. (2015). Encapsulation of enzyme via one-step template-free formation of stable organic-inorganic capsules: a simple and efficient method for immobilizing enzyme with high activity and recyclability. Biotechnology and Bioengineering, 112(6), 1092–1101.

    Article  CAS  Google Scholar 

  103. Kim, J., Grate, J. W., & Wang, P. (2008). Nanobiocatalysis and its potential applications. Trends in Biotechnology, 26(11), 639–646.

    Article  CAS  Google Scholar 

  104. Lee, K. S., Woo, M. H., Kim, H. S., Lee, E. Y., & Lee, I. S. (2009). Synthesis of hybrid Fe(3)O(4)-silica-NiO superstructures and their application as magnetically separable high-performance biocatalysts. Chemical Communications, 25, 3780–3782.

    Article  CAS  Google Scholar 

  105. Hyun, Y., Lee, I., Hee, S., Kyung, O., Shim, J., Lee, J., et al. (2013). Enhanced stability and reusability of marine epoxide hydrolase using ship-in-a-bottle approach with magnetically-separable mesoporous silica. Journal of Molecular Catalysis. B, Enzymatic, 89, 48–51.

    Article  CAS  Google Scholar 

  106. Choi, S. H., Kim, H. S., Lee, I. S., & Lee, E. Y. (2010). Functional expression and magnetic nanoparticle-based Immobilization of a protein-engineered marine fish epoxide hydrolase of Mugil cephalus for enantioselective hydrolysis of racemic styrene oxide. Biotechnology Letters, 32(11), 1685–1691.

    Article  CAS  Google Scholar 

  107. Wang, W., Wang, D. I. C., & Li, Z. (2011). Facile fabrication of recyclable and active nanobiocatalyst: purification and immobilization of enzyme in one pot with Ni-NTA functionalized magnetic nanoparticle. Chemical Communications, 47(28), 8115–8117.

    Article  CAS  Google Scholar 

  108. Kim, Y., Lee, I., Choi, S., Lee, O., Kim, J., & Lee, E. (2013). Nanoimmobilization of marine epoxide hydrolase of Mugil cephalus for repetitive enantioselective resolution of racemic styrene oxide in aqueous buffer. Journal of Nanoscience and Nanotechnology, 13(3), 2266–2271.

    Article  CAS  Google Scholar 

  109. Trevan, M. D. (1988). Enzyme immobilization by entrapment- new protein techniques. Methods in Molecular Biology, 3, 491–494.

    CAS  Google Scholar 

  110. Maritz, J., Krieg, H. M., Yeates, C. A., Botes, A. L., & Breytenbach, J. C. (2003). Calcium alginate entrapment of the yeast Rhodosporidium toruloides for the kinetic resolution of 1,2-epoxyoctane. Biotechnology Letters, 25(20), 1775–1781.

    Article  CAS  Google Scholar 

  111. Mateo, C., Palomo, M., van Langen, L. M., van Rantwijk, F., & Sheldon, R. A. (2004). A new, mild cross-linking methodology to prepare cross-linked enzyme aggregates. Biotechnology and Bioengineering, 86(3), 273–276.

    Article  CAS  Google Scholar 

  112. Yu, C.-Y., Li, X.-F., Lou, W.-Y., & Zong, M.-H. (2013). Cross-linked enzyme aggregates of Mung bean epoxide hydrolases: a highly active, stable and recyclable biocatalyst for asymmetric hydrolysis of epoxides. Journal of Biotechnology, 166(1–2), 12–19.

    Article  CAS  Google Scholar 

  113. Reetz, M. T., Kahakeaw, D., & Lohmer, R. (2008). Addressing the numbers problem in directed evolution. ChemBioChem, 9(11), 1797–1804.

    Article  CAS  Google Scholar 

  114. Turner, N. J. (2009). Directed evolution drives the next generation of biocatalysts. Nature Chemical Biology, 5(8), 567–573.

    Article  CAS  Google Scholar 

  115. Reetz, M. T., & Carballeira, J. D. (2007). Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nature Protocols, 2(4), 891–903.

    Article  CAS  Google Scholar 

  116. Fujii, R., Kitaoka, M., & Hayashi, K. (2004). One-step random mutagenesis by error-prone rolling circle amplification. Nucleic Acids Research, 32(19), e145.

    Article  Google Scholar 

  117. Reetz, M. T., Torre, C., Eipper, A., Lohmer, R., Hermes, M., Brunner, B., et al. (2004). Enhancing the enantioselectivity of an epoxide hydrolase by directed evolution. Organic Letters, 6(2), 177–180.

    Article  CAS  Google Scholar 

  118. Yuan, L., Kurek, I., English, J., & Keenan, R. (2005). Laboratory-directed protein evolution. Microbiology and Molecular Biology Reviews, 69(3), 373–392.

    Article  CAS  Google Scholar 

  119. van Loo, B., Spelberg, J. H. L., Kingma, J., Sonke, T., Wubbolts, M. G., Janssen, D. B., et al. (2004). Directed evolution of epoxide hydrolase from A. radiobacter toward higher enantioselectivity by error-prone PCR and DNA shuffling. Chemistry & Biology, 11(7), 981–990.

    Article  CAS  Google Scholar 

  120. Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 22(2), 195–201.

    Article  CAS  Google Scholar 

  121. Zheng, L., Baumann, U., & Reymond, J.-L. (2004). An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Research, 32(14), e115.

    Article  Google Scholar 

  122. van Loo, B., Kingma, J., Heyman, G., Wittenaar, A., Spelberg, J. H. L., Sonke, T., et al. (2009). Improved enantioselective conversion of styrene epoxides and meso-epoxides through epoxide hydrolases with a mutated nucleophile-flanking residue. Enzy. Microb. Technol., 44(3), 145–153.

    Article  CAS  Google Scholar 

  123. Xuea, F., Liua, Z.-Q., Wana, N.-W., Zhua, H.-Q., & Zhenga, Yu-Guo. (2015). Engineering the epoxide hydrolase from Agromyces mediolanus for enhanced enantioselectivity and activity in the kinetic resolution of racemic epichlorohydrin. RSC Adv., 5, 31525–31532.

    Article  CAS  Google Scholar 

  124. Xue, F., Liu, Z., Wang, Y., Zhu, H., Wan, N., & Zheng, Y. (2015). Efficient synthesis of (S) -epichlorohydrin in high yield by cascade biocatalysis with halohydrin dehalogenase and epoxide hydrolase mutants. Catalysis Communications, 72, 147–149.

    Article  CAS  Google Scholar 

  125. Kotik, M., Zhao, W., Iacazio, G., & Archelas, A. (2013). Directed evolution of metagenome-derived epoxide hydrolase for improved enantioselectivity and enantioconvergence. Journal of Molecular Catalysis. B, Enzymatic, 91, 44–51.

    Article  CAS  Google Scholar 

  126. Reetz, M. T., & Zheng, H. (2011). Manipulating the expression rate and enantioselectivity of an epoxide hydrolase by using directed evolution. ChemBioChem, 12(10), 1529–1535.

    Article  CAS  Google Scholar 

  127. Reetz, M. T., Wang, L.-W., & Bocola, M. (2006). Directed evolution of enantioselective enzymes: iterative cycles of CASTing for probing protein-sequence space. Angewandte Chemie Int Ed, 45(8), 1236–1241.

    Article  CAS  Google Scholar 

  128. Feng, X., Sanchis, J., Reetz, M. T., & Rabitz, H. (2012). Enhancing the efficiency of directed evolution in focused enzyme libraries by the adaptive substituent reordering algorithm. Chemistry--A European Journal, 18(18), 5646–5654.

    Article  CAS  Google Scholar 

  129. Kong, X.-D., Ma, Q., Zhou, J., Zeng, B.-B., & Xu, J.-H. (2014). A smart library of epoxide hydrolase variants and the top hits for synthesis of (S)-β-blocker precursors. Angewandte Chemie Int Ed, 53(26), 6641–6644.

    Article  CAS  Google Scholar 

  130. Sun, Z., Lonsdale, R., Kong, X.-D., Xu, J.-H., Zhou, J., & Reetz, M. T. (2015). Reshaping an enzyme binding pocket for enhanced and inverted stereoselectivity: use of smallest amino acid alphabets in directed evolution. Angewandte Chemie Int Ed, 54(42), 12410–12415.

    Article  CAS  Google Scholar 

  131. Gumulya, Y., & Reetz, M. T. (2011). Enhancing the thermal robustness of an enzyme by directed evolution: least favorable starting points and inferior mutants can map superior evolutionary pathways. ChemBioChem, 12(16), 2502–2510.

    Article  CAS  Google Scholar 

  132. Reetz, M. T., Carballeira, J. D., & Vogel, A. (2006). Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angewandte Chemie Int Ed, 45(46), 7745–7751.

    Article  CAS  Google Scholar 

  133. Wijma, H. J., Floor, R. J., Jekel, P. A., Baker, D., Marrink, S. J., & Janssen, D. B. (2014). Computationally designed libraries for rapid enzyme stabilization. Protein Engineering, Design & Selection, 27(2), 49–58.

    Article  CAS  Google Scholar 

  134. Goldsmith, M., & Tawfik, D. S. (2012). Directed enzyme evolution: beyond the low-hanging fruit. Current Opinion in Structural Biology, 22(4), 406–412.

    Article  CAS  Google Scholar 

  135. Reetz, M. T. (2009). Directed evolution of enantioselective enzymes: an unconventional approach to asymmetric catalysis in organic chemistry. Journal of Organic Chemistry, 74(16), 5767–5778.

    Article  CAS  Google Scholar 

  136. Wang, M., Si, T., & Zhao, H. (2012). Biocatalyst development by directed evolution. Bioresource technology, 115, 117–125.

    Article  CAS  Google Scholar 

  137. Reetz, M. T. (2011). Laboratory evolution of stereoselective enzymes: a prolific source of catalysts for asymmetric reactions. Angewandte Chemie Int Ed, 50(1), 138–174.

    Article  CAS  Google Scholar 

  138. Bornscheuer, U. T., Huisman, G. W., Kazlauskas, R. J., Lutz, S., Moore, J. C., & Robins, K. (2012). Engineering the third wave of biocatalysis. Nature, 485(7397), 185–194.

    Article  CAS  Google Scholar 

  139. Widersten, M. (2014). Protein engineering for development of new hydrolytic biocatalysts. Current Opinion in Chemical Biology, 21, 42–47.

    Article  CAS  Google Scholar 

  140. Widersten, M., Gurell, A., & Lindberg, D. (2010). Structure-function relationships of epoxide hydrolases and their potential use in biocatalysis. Biochimica et Biophysica Acta, 1800(3), 316–326.

    Article  CAS  Google Scholar 

  141. Jochens, H., Stiba, K., Savile, C., Fujii, R., Yu, J.-G., Gerassenkov, T., et al. (2009). Converting an esterase into an epoxide hydrolase. Angewandte Chemie Int Ed, 48(19), 3532–3535.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Department of Biotechnology (DBT) via Grant No. BT/PR/4694/PID/6/633/2012, Government of India, New Delhi. PS gratefully acknowledge DBT for the SRF. The financial assistance received from Department of Science and Technology-Promotion of University Research and Scientific Excellence (DST-PURSE) and University Grants Commission-Special Assistance Programme (UGC-SAP) (DRS Phase-I) is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipti Sareen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, P., Sareen, D. An Overview on the Enhancement of Enantioselectivity and Stability of Microbial Epoxide Hydrolases. Mol Biotechnol 59, 98–116 (2017). https://doi.org/10.1007/s12033-017-9996-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-017-9996-8

Keywords

Navigation