Skip to main content
Log in

Enantioconvergent bioconversion of p-chlorostyrene oxide to (R)-p-chlorophenyl-1,2-ethandiol by the bacterial epoxide hydrolase of Caulobacter crescentus

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The enantioselective hydrolysis of eight racemic styrene oxide derivatives has been investigated by using the recombinant cell containing epoxide hydrolase (EH) of Caulobacter crescentus. Some styrene oxide derivatives were hydrolyzed via enantioconvergent manner so that enantiopure diol products could be prepared with a 100% theoretical yield. The recombinant cell containing C. crescentus EH exhibited an ability to hydrolyze racemic p-chlorostyrene oxide the most enantioconvergently, thus affording the formation of the corresponding (R)-diol with enantiomeric excess (ee) as high as 95% and a 72% yield in preparative-scale (16.8 g/l) bioconversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Breuer M, Ditrich K, Habicher T, Hauer B, Kesseler M, Sturmer R, Zelinski T (2004) Industrial methods for the production of optically active intermediates. Angew Chem Int Ed 43:788–824

    Article  CAS  Google Scholar 

  • Faber K, Kroutil W (2002) Stereoselectivity in biocatalytic enantioconvergent reactions and a computer program for its determination. Tetrahedron Asymmetry 13:377–382

    Article  CAS  Google Scholar 

  • Genzel Y, Archelas A, Broxterman QB, Schulze B, Furstoss R (2002) Microbiological transformation 50: selection of epoxide hydrolases for enzymatic resolution of 2-, 3- or 4-pyridyloxirane. J Mol Catal B: Enzym 16:217–222

    Article  CAS  Google Scholar 

  • Hwang SH, Hyun HJ, Lee BJ, Park YS, Choi CY, Han J, Joo H (2005) Screening from the genome databases: novel epoxide hydrolase from Caulobacter crescentus. J Microbiol Biotechnol 16:32–36

    Google Scholar 

  • Hwang S, Hyun H, Lee B, Park Y, Lee EY, Choi C (2006) Purification and characterization of recombinant Caulobacter crescentus epoxide hydrolase. Biotechnol Bioprocess Eng 11:282–287

    Article  CAS  Google Scholar 

  • Kasai N, Suzuki T, Furukawa Y (1998) Chiral C3 epoxides and halohydrins: Their preparation and synthetic application. J Mol Catal B: Enzym 4:237–252

    Article  CAS  Google Scholar 

  • Kim HS, Lee OK, Hwang S, Kim BJ, Lee EY (2008) Biosynthesis of (R)-phenyl-1,2-ethanediol from racemic styrene oxide by using bacterial and marine fish epoxide hydrolases. Biotechnol Lett 30:127–133

    Article  PubMed  CAS  Google Scholar 

  • Lee EY, Shuler ML (2007) Molecular engineering of epoxide hydrolase and its application to asymmetric and enantioconvergent hydrolysis. Biotechnol Bioeng 98:318–327

    Article  PubMed  CAS  Google Scholar 

  • Lutje Spelberg JH, Rink R, Kellogg RM, Janssen DB (1998) Enantioselectivity of a recombinant epoxide hydrolase from Agrobacterium radiobacter. Tetrahedron Asymmetry 9:459–466

    Article  Google Scholar 

  • Manoj KM, Archelas A, Barati J, Furstos R (2001) Microbiological transformations 45. A green chemistry preparative scale synthesis of enantiopure building blocks of Eliprodil: elaboration of a high substrate concentration epoxide hydrolase-catalyzed hydrolytic kinetic resolution process. Tetrahedron 57:695–701

    Article  CAS  Google Scholar 

  • Monterde MI, Lombard M, Archelas A, Cronin A, Arand M, Furstoss R (2004) Enzymatic transformations. Part 58: Enantioconvergent biohydrolysis of styrene oxide derivatives catalysed by the Solanum tuberosum epoxide hydrolase. Tetrahedron Asymmetry 15:2801–2805

    Article  CAS  Google Scholar 

  • Moussou P, Archelas A, Baratti J, Furstoss R (1998) Microbiological transformations. Part 39: determination of the regioselectivity occurring during oxirane ring opening by epoxide hydrolases: a theoretical analysis and a new method for its determination. Tetrahedron Asymmetry 9:1539–1547

    Article  CAS  Google Scholar 

  • Orru RVA, Archelas A, Furstoss R, Faber K (1998) Epoxide hydrolases and their synthetic applications. Adv Biochem Eng Biotechnol 63:145–167

    Google Scholar 

  • Steinreiber A, Mayer SF, Saf R, Faber K (2001) Biocatalytic asymmetric and enantioconvergent hydrolysis of trisubstituted oxiranes. Tetrahedron Asymmetry 12:1519–1528

    Article  CAS  Google Scholar 

  • Strauss UT, Felfer U, Faber K (1999) Biocatalytic transformation of racemates into chiral building blocks in 100% chemical yield and 100% enantiomeric excess. Tetrahedron Asymmetry 10:107–117

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Marine and Extreme Genome Research Center Program, Ministry of Marine Affairs and Fisheries, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Yeol Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, S., Choi, C.Y. & Lee, E.Y. Enantioconvergent bioconversion of p-chlorostyrene oxide to (R)-p-chlorophenyl-1,2-ethandiol by the bacterial epoxide hydrolase of Caulobacter crescentus . Biotechnol Lett 30, 1219–1225 (2008). https://doi.org/10.1007/s10529-008-9668-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-008-9668-7

Keywords

Navigation