Skip to main content
Log in

Toward advanced ionic liquids. Polar, enzyme-friendly solvents for biocatalysis

  • Reviews
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Ionic liquids, also called molten salts, are mixtures of cations and anions that melt below 100°C. Typical ionic liquids are dialkylimidazolium cations with weakly coordinating anions such as (MeOSO3) or (PF6). Advanced ionic liquids such as choline citrate have biodegradable, less expensive, and less toxic anions and cations. Deep eutectic solvents are also included in the advanced ionic liquids. Deep eutectic solvents are mixtures of salts such as choline chloride and uncharged hydrogen bond donors such as urea, oxalic acid, or glycerol. For example, a mixture of choline chloride and urea in 1:2 molar ratio liquefies to form a deep eutectic solvent. Their properties are similar to those of ionic liquids. Water-miscible ionic liquids as cosolvents with water enhance the solubility of substrates or products. Although traditional water-miscible organic solvents also enhance solubility, they often inactivate enzymes, while ionic liquids do not. The enhanced solubility of substrates can increase the rate of reaction and often increases the regioor enantioselectivity. Ionic liquids can also be solvents for non-aqueous reactions. In these cases, they are especially suited to dissolve polar substrates. Polar organic solvent alternatives inactivate enzymes, but ionic liquids do not even when they have similar polarities. Besides their solubility properties, ionic liquids and deep eutectic solvents may be greener than organic solvents because ionic liquids are nonvolatile, and can be made from nontoxic components. This review covers selected examples of enzyme catalyzed reaction in ionic liquids that demonstrate their advantages and unique properties, and point out opportunities for new applications. Most examples involve hydrolases, but oxidoreductases and even whole cell reactions have been reported in ionic liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walden, P. (1914) Molecular weights and electrical conductivity of several fused salts. Bull. Acad. Imper. Sci. (St. Petersburg) 1800: 405–422.

    Google Scholar 

  2. Wilkes, J. S., J. A. Levisky, R. A. Wilson, and C. L. Hussey (1982) Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorg. Chem. 21: 1263–1264.

    Article  CAS  Google Scholar 

  3. Wasserscheid, P. and T. Welton. (2008) Ionic liquids in synthesis. 2nd ed. Wiley-VCH, Weinheim, Germany.

    Google Scholar 

  4. Dominquez de María, P. (2008) “Nonsolvent” applications of ionic liquids in biotransformations and organocatalysis. Angew. Chem. Int. Ed. 47: 6960–6968.

    Article  CAS  Google Scholar 

  5. Park, S. and R. J. Kazlauskas (2003) Biocatalysis in ionic liquids — advantages beyond green technology. Curr. Opin. Biotechnol. 14: 432–437.

    Article  CAS  Google Scholar 

  6. Pinto, P. C. A. G., Saraiva, M. L. M. F. Saraiva, and J. L. F. C. Lima (2008) Oxidoreductase behavior in ionic liquids: a review. Anal. Sci. 24: 1231–1238.

    Article  CAS  Google Scholar 

  7. Sheldon, R. A., R. Madeira Lau, M. J. Sorgedrager, F. van Rantwijk, and K. R. Seddon (2002) Biocatalysis in ionic liquids. Green Chem. 4: 147–151.

    Article  CAS  Google Scholar 

  8. Welton, T. (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99: 2071–2083.

    CAS  Google Scholar 

  9. Kragl, U., M. Eckstein, and N. Kaftzik (2002) Enzyme catalysis in ionic liquids. Curr. Opin. Biotechnol. 13: 565–571.

    Article  CAS  Google Scholar 

  10. van Rantwijk, F. and R. A. Sheldon (2007) Biocatalysis in ionic liquids. Chem. Rev. 107: 2757–2785.

    Article  CAS  Google Scholar 

  11. Yang, Z. and W. Pan (2005) Ionic liquids: Green solvents for nonaqueous biocatalysis. Enzym. Microb. Technol. 37: 19–28.

    Article  CAS  Google Scholar 

  12. Cull, S. G., J. D. Holbrey, V. Vargas-Mora, K. R. Seddon, and G. J. Lye (2000) Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations. Biotechnol. Bioeng. 69: 227–233.

    Article  CAS  Google Scholar 

  13. Madeira Lau, R., F. van Rantwijk, K. R. Seddon, and R. A. Sheldon (2000) Lipase-catalyzed reactions in ionic liquids. Org. Lett. 2: 4189–4191.

    Article  CAS  Google Scholar 

  14. Park, S. and R. J. Kazlauskas (2001) Improved preparation and use of room-temperature ionic liquids in lipasecatalyzed enantio- and regioselective acylations. J. Org. Chem. 66: 8395–8401.

    Article  CAS  Google Scholar 

  15. Itoh, T., E. Akasaki, K. Kudo, and S. Shirakami (2001) Lipase-catalyzed enantioselective acylation in the ionic liquid solvent system: reaction of enzyme anchored to the solvent. Chem. Lett. 30: 262–263.

    Article  Google Scholar 

  16. Erbeldinger, M., A. J. Mesiano, and A. J. Russell (2000) Enzymatic catalysis of formation of Z-aspartame in ionic liquid — an alternative to enzymatic catalysis in organic solvents. Biotechnol. Prog. 16: 1129–1131.

    Article  CAS  Google Scholar 

  17. Abbott, A. P., G. Capper, D. L. Davies, R. K. Rasheed, and V. Tambyrajah (2003) Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 1: 70–71.

    Article  CAS  Google Scholar 

  18. Abbott, A. P., D. Boothby, G. Capper, D. L. Davies, and R. K. Rasheed (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J. Am. Chem. Soc. 126: 9142–9147.

    Article  CAS  Google Scholar 

  19. Abbott, A. P., R. C. Harris, and K. S. Ryder (2007) Application of hole theory to define ionic liquids by their transport properties. J. Phys. Chem. B 111: 4910–4913.

    Article  CAS  Google Scholar 

  20. Docherty, K. M. and C. F. Kulpa (2005) Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem. 7: 185–189.

    Article  CAS  Google Scholar 

  21. Seddon, K. R., A. Stark, and M. Torres (2000) Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem. 72: 2275–2287.

    Article  CAS  Google Scholar 

  22. Zaks, A. and A. M. Klibanov (1984) Enzymatic catalysis in organic media at 100°C. Science 224: 1249–1251.

    Article  CAS  Google Scholar 

  23. Kim, K., B. Song, M. Choi, and M. Kim (2001) Biocatalysis in ionic liquids: markedly enhanced enantioselectivity of lipase. Org. Lett. 3: 1507–1509.

    Article  CAS  Google Scholar 

  24. Roberts, N. J., A. Seago, J. S. Carey, R. Freer, C. Preston, and G. J. Lye (2004) Lipase catalysed resolution of the lotrafiban intermediate 2,3,4,5-tetrahydro-4-methyl-3-oxo-1H-1,4-benzodiazepine-2-acetic acid methyl ester in ionic liquids: comparison to the industrial t-butanol process. Green Chem. 6: 475–482.

    Article  CAS  Google Scholar 

  25. Lou, W., M. Zong, and H. Wu (2005) Enzymic asymmetric hydrolysis of D,L-p-hydroxyphenylglycine methyl ester in aqueous ionic liquid co-solvent mixtures. Biotechnol. Appl. Biochem. 41: 151–156.

    Article  CAS  Google Scholar 

  26. Liu, Y., W. Lou, M. Zong, R. Xu, X. Hong, and H. Wu (2005) Increased enantioselectivity in the enzymatic hydrolysis of amino acid esters in the ionic liquid 1-butyl-3-methyl-imidazolium tetrafluoroborate. Biocatal. Bio transform. 23: 89–95.

    Article  CAS  Google Scholar 

  27. Lou, W. Y., M. H. Zong, T. J. Smith, H. Wu, and J. F. Wang (2006) Impact of ionic liquids on papain: an investigation of structure-function relationships. Green Chem. 8: 509–512.

    Article  CAS  Google Scholar 

  28. Gorke, J. T., F. Srienc, and R. J. Kazlauskas (2008) Hydrolase-catalyzed biotransformations in deep eutectic solvents. Chem. Commun. 14: 1235–1237.

    Article  CAS  Google Scholar 

  29. Wallert, S., K. Drauz, I. Grayson, H. Gröger, P. Dominguez de Maria, and C. Bolm (2005) Ionic liquids as additives in the pig liver esterase (PLE) catalysed synthesis of chiral disubstituted malonates. Green Chem. 7: 602–605.

    Article  CAS  Google Scholar 

  30. Wehofsky, N., C. Wespe, V. Cerovsky, A. Pech, E. Hoess, R. Rudolph, and F. Bordusa (2008) Ionic liquids and proteases: a clean alliance for semisynthesis. ChembioChem 9: 1493–1499.

    Article  CAS  Google Scholar 

  31. Zhao, H., L. Jackson, Z. Song, and O. Olubajo (2006) Using ionic liquid (EMIM) (CH3COO) as an enzyme-’friendly’ co-solvent for resolution of amino acids. Tetrahedron Asymmetr. 17: 2491–2498.

    Article  CAS  Google Scholar 

  32. Vafiadi, C., E. Topakas, V. R. Nahmias, C. B. Faulds, and P. Christakopoulos (2009) Feruloyl esterase-catalysed synthesis of glycerol sinapate using ionic liquids mixtures. J. Biotechnol. 139: 124–129.

    Article  CAS  Google Scholar 

  33. Kaftzik, N., P. Wasserscheid, and U. Kragl (2002) Use of ionic liquids to increase the yield and enzyme stability in the β-galactosidase catalysed synthesis of N-acetyllactosamine. Org. Process Res. Dev.: 553–557.

  34. Lang, M., T. Kamrat, and B. Nidetzky (2006) Influence of ionic liquid cosolvent on transgalactosylation reactions catalyzed by thermostable β-glycosylhydrolase CelB from Pyrococcus furiosus. Biotechnol. Bioeng. 95: 1093–1100.

    Article  CAS  Google Scholar 

  35. Mischitz, M., K. Faber, and A. Willetts (1995) Isolation of a highly enantioselective epoxide hydrolase from Rhodococcus sp. NCIMB 11216. Biotechnol. Lett. 17: 893–898.

    Article  CAS  Google Scholar 

  36. Karboune, S., A. Archelas, and J. Baratti (2006) Properties of epoxide hydrolase from Aspergillus niger for the hydrolytic kinetic resolution of epoxides in pure organic media. Enzym. Microb. Technol. 39: 318–324.

    Article  CAS  Google Scholar 

  37. Chiappe, C., E. Leandri, S. Lucchesi, D. Pieraccini, B. D. Hammock, and C. Morisseau (2004) Biocatalysis in ionic liquids: the stereoconvergent hydrolysis of trans-β-methylstyrene oxide catalyzed by soluble epoxide hydrolase. J. Mol. Catal. B: Enzym. 27: 243–248.

    Article  CAS  Google Scholar 

  38. Chiappe, C., E. Leandri, B. D. Hammock, and C. Morisseau (2007) Effect of ionic liquids on epoxide hydrolase-catalyzed synthesis of chiral 1,2-diols. Green Chem. 9: 162–168.

    Article  CAS  Google Scholar 

  39. Chin, J. T., S. L. Wheeler, and A. M. Klibanov (1994) On protein solubility in organic solvents. Biotechnol. Bioeng. 44: 140–145.

    Article  CAS  Google Scholar 

  40. van Rantwijk, F., F. Secundo, and R. A. Sheldon (2006) Structure and activity of Candida antarctica lipase B in ionic liquids. Green Chem. 8: 282–286.

    Article  CAS  Google Scholar 

  41. Nakashima, K., T. Maruyama, N. Kamiya, and M. Goto (2005) Comb-shaped poly(ethylene glycol)-modified subtilisin carlsberg is soluble and highly active in ionic liquids. Chem. Commun. 14: 4297–4299.

    Article  CAS  Google Scholar 

  42. Nakashima, K., T. Maruyama, N. Kamiya, and M. Goto (2006) Homogeneous enzymatic reactions in ionic liquids with poly(ethylene glycol)-modified subtilisin. Org. Biomol. Chem. 4: 3462–3467.

    Article  CAS  Google Scholar 

  43. Lozano, P., T. De Diego, D. Carrié, M. Vaultier, and J. L. Iborra (2001) Over-stabilization of Candida antarctica lipase B by ionic liquids in ester synthesis. Biotechnol. Lett. 23: 1529–1533.

    Article  CAS  Google Scholar 

  44. Itoh, T., Y. Nishimura, N. Ouchi, and S. Hayase (2003) 1-butyl-2,3-dimethylimidazolium tetrafluoroborate: the most desirable ionic liquid solvent for recycling use of enzyme in lipase-catalyzed transesterification using vinyl acetate as acyl donor. J. Mol. Catal. B: Enzym. 26: 41–45.

    Article  CAS  Google Scholar 

  45. Abe, Y., K. Kude, S. Hayase, M. Kawatsura, K. Tsunashima, and T. Itoh (2008) Design of phosphonium ionic liquids for lipase-catalyzed transesterification. J. Mol. Catal. B: Enzym. 51: 81–85.

    Article  CAS  Google Scholar 

  46. Ha, S. H., M. N. Lan, S. H. Lee, S. M. Hwang, and Y.-M. Koo (2007) Lipase-catalyzed biodiesel production from soybean oil in ionic liquids. Enzym. Microb. Technol. 41: 480–483.

    Article  CAS  Google Scholar 

  47. Gamba, M., A. A. M. Lapis, and J. Dupont (2008) Supported ionic liquid enzymatic catalysis for the production of biodiesel. Adv. Synth. Catal. 350: 160–165.

    Article  CAS  Google Scholar 

  48. Schofer, S. H., N. Kaftzik, U. Kragl, and P. Wasserscheid (2001) Enzyme catalysis in ionic liquids: lipase catalysed kinetic resolution of 1-phenylethanol with improved enantioselectivity. Chem. Commun. 5: 425–426.

    Article  CAS  Google Scholar 

  49. Kamal, A. and G. Chouhan (2004) Chemoenzymatic synthesis of enantiomerically pure 1,2-diols employing immobilized lipase in the ionic liquid (bmim)PF6. Tetrahedron Lett. 45: 8801–8805.

    Article  CAS  Google Scholar 

  50. Hongwei, Y., W. Jinchuan, and C. C. Bun (2005) Kinetic resolution of ibuprofen catalyzed by Candida rugosa lipase in ionic liquids. Chirality 17: 16–21.

    Article  CAS  Google Scholar 

  51. Xin, J., Y. Zhao, G. Zhao, Y. Zheng, X. Sheng, C. Xia, and S. Li (2005) Enzymatic resolution of (R, S)-naproxen in water-saturated ionic liquid. Biocata. Biotrans. 23: 353–361.

    Article  CAS  Google Scholar 

  52. Itoh, T., Y. Matsushita, Y. Abe, S. Han, S. Wada, S. Hayase, M. Kawatsura, S. Takai, M. Morimoto, and Y. Hirose (2006) Increased enantioselectivity and remarkable acceleration of lipase-catalyzed transesterification by using an imidazolium PEG-alkyl sulfate ionic liquid. Chem. Eur. J. 12: 9228–9237.

    Article  CAS  Google Scholar 

  53. Malhotra, S. V. and H. Zhao (2005) Enantioseparation of the esters of α-N-acetylamino acids by lipase in ionic liquid. Chirality 17: S240–S242.

    Article  CAS  Google Scholar 

  54. Liu, Q., M. H. A. Janssen, F. van Rantwijk, and R. A. Sheldon (2005) Room-temperature ionic liquids that dissolve carbohydrates in high concentrations. Green Chem. 7: 39–42.

    Article  CAS  Google Scholar 

  55. Lee, S. H., H. M. Nguyen, Y. Koo, and S. H. Ha (2008) Ultrasound-enhanced lipase activity in the synthesis of sugar ester using ionic liquids. Proc. Biochem. 43: 1009–1012.

    Article  CAS  Google Scholar 

  56. Lee, S. H., D. T. Dang, S. H. Ha, W.-J. Chang, and Y.-M. Koo (2008) Lipase-catalyzed synthesis of fatty acid sugar ester using extremely supersaturated sugar solution in ionic liquids. Biotechnol. Bioeng. 99: 1–8.

    Article  CAS  Google Scholar 

  57. Lee, S. H., S. H. Ha, N. M. Hiep, W.-J. Chang, and Y.-M. Koo (2008) Lipase-catalyzed synthesis of glucose fatty acid ester using ionic liquids mixtures. J. Biotechnol. 133: 486–489.

    Article  CAS  Google Scholar 

  58. Ganske, F. and U. T. Bornscheuer (2005) Lipasecatalyzed glucose fatty acid ester synthesis in ionic liquids. Org. Lett. 7: 3097–3098.

    Article  CAS  Google Scholar 

  59. Zhao, H., G. A. Baker, Z. Song, O. Olubajo, T. Crittlea, and D. Peters (2008) Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chem. 10: 696–705.

    Article  CAS  Google Scholar 

  60. Li, X., W. Lou, T. J. Smith, M. Zong, H. Wu, and J. Wang (2006) Efficient regioselective acylation of 1-β-D-arabinofuranosylcytosine catalyzed by lipase in ionic liquid containing systems. Green Chem. 8: 538–544.

    Article  CAS  Google Scholar 

  61. Katsoura, M. H., A. C. Polydera, P. Katapodis, F. N. Kolisis, and H. Stamatis (2007) Effect of different reaction parameters on the lipase-catalyzed selective acylation of polyhydroxylated natural compounds in ionic liquids. Proc. Biochem. 42: 1326–1334.

    Article  CAS  Google Scholar 

  62. Dong, H., S. Cao, Z. Li, S. Han, D. You, and J. Shen (1999) Study on the enzymic polymerization mechanism of lactone and the strategy for improving the degree of polymerization. J. Polym. Sci. A: Polym. Chem. 37: 1265–1275.

    Article  CAS  Google Scholar 

  63. Uyama, H., T. Takamoto, and S. Kobayashi (2002) Enzymatic synthesis of polyesters in ionic liquids. Polym. J. 34: 94–96.

    Article  CAS  Google Scholar 

  64. Nara, S. J., J. R. Harjani, M. M. Salunkhe, A. T. Mane, and P. P. Wadgaonkar (2003) Lipase-catalysed polyester synthesis in 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid. Tetrahedron Lett. 44: 1371–1373.

    Article  CAS  Google Scholar 

  65. Kaar, J. L., A. M. Jesionowski, J. A. Berberich, R. Moulton, and A. J. Russell (2003) Impact of ionic liquid physical properties on lipase activity and stability. J. Am. Chem. Soc. 125: 4125–4131.

    Article  CAS  Google Scholar 

  66. Marcilla, R., M. de Geus, D. Mecerreyes, C. J. Duxbury, C. E. Koning, and A. Heise (2006) Enzymatic polyester synthesis in ionic liquids. Eur. Polym. J. 42: 1215–1221.

    Article  CAS  Google Scholar 

  67. Gorke, J. T., K. Okrasa, A. Louwagie, R. J. Kazlauskas, and F. Srienc (2007) Enzymatic synthesis of poly(hydroxylalkanoates) in ionic liquids. J. Biotechnol. 132: 306–313.

    Article  CAS  Google Scholar 

  68. Gorke, J. T., F. Srienc, and R. J. Kazlauskas (2009) Deep eutectic solvents for Candida antarctica lipase Bcatalyzed reactions. In ACS Symposium Series, Malhotra, S. V., Ed., in press.

  69. Xing, G., F. Li, C. Ming, and L. Ran (2007) Peptide bond formation catalyzed by α-chymotrypsin in ionic liquids. Tetrahedron Lett. 48: 4271–4274.

    Article  CAS  Google Scholar 

  70. Laszlo, J. A. and D. L. Compton (2001) α-Chymotrypsin catalysis in imidazolium-based ionic liquids. Biotechnol. Bioeng. 75: 181–186.

    Article  CAS  Google Scholar 

  71. Shah, S. and M. N. Gupta (2007) Obtaining high transesterification activity for subtilisin in ionic liquids. Biochim. Biophys. Acta. 1770: 94–98.

    CAS  Google Scholar 

  72. Persson, M. and U. T. Bornscheuer (2003) Increased stability of an esterase from Bacillus stearothermophilus in ionic liquids as compared to organic solvents. J. Mol. Catal. B: Enzym. 22: 21–27.

    Article  CAS  Google Scholar 

  73. Kaftzik, N., S. Neumann, M. Kula, and U. Kragl. (2003) Enzymatic condensation reactions in ionic liquids. pp. 206–211. In: R. D. Rogers and K. R. Seddon (eds.), Ionic Liquids as Green Solvents. American Chemical Society, Washington, DC, USA.

    Chapter  Google Scholar 

  74. Chefson, A. and K. Auclair (2007) CYP3A4 activity in the presence of organic cosolvents, ionic liquids, or water-immiscible organic solvents. ChemBioChem 8: 1189–1197.

    Article  CAS  Google Scholar 

  75. Tee, K. L., D. Roccatano, S. Stolte, J. Arning, B. Jastorff, and U. Schwaneberg (2008) Ionic liquid effects on the activity of monooxygenase P450 BM-3. Green Chem. 10: 117–123.

    Article  CAS  Google Scholar 

  76. Hinckley, G., V. V. Mozhaev, C. Budde, and Y. L. Khmelnitsky (2002) Oxidative enzymes possess catalytic activity in systems with ionic liquids. Biotechnol. Lett. 24: 2083–2087.

    Article  CAS  Google Scholar 

  77. Machado, M. F. and J. M. Saraiva (2005) Thermal stability and activity regain of horseradish peroxidase in aqueous mixtures of imidazolium-based ionic liquids. Biotechnol. Lett. 27: 1233–1239.

    Article  CAS  Google Scholar 

  78. Kumar, A., N. Jain, and S. M. S. Chauhan (2007) Biomimetic oxidation of veratryl alcohol with H2O2 catalyzed by iron(III) porphyrins and horseradish peroxidase in ionic liquid. Synlett 3: 411–414.

    Article  CAS  Google Scholar 

  79. Moniruzzaman, M., N. Kamiya, and M. Goto (2009) Biocatalysis in water-in-ionic liquid microemulsions: a case study with horseradish peroxidase. Langmuir 25: 977–982.

    Article  CAS  Google Scholar 

  80. Okrasa, K., E. Guibé-Jampel, and M. Therisod (2003) Ionic liquids as a new reaction medium for oxidaseperoxidase-catalyzed sulfoxidation. Tetrahedron Asymm. 14: 2487–2490.

    Article  CAS  Google Scholar 

  81. Rumbau, V., R. Marcilla, E. Ochoteco, J. A. Pomposo, and D. Mecerreyes (2006) Ionic liquid immobilized enzyme for biocatalytic synthesis of conducting polyaniline. Macromolecules 39: 8547–8549.

    Article  CAS  Google Scholar 

  82. Alvarez, S., S. Manolache, and F. Denes (2003) Synthesis of polyaniline using horseradish peroxidase immobilized on plasma-functionalized polyethylene surfaces as initiator. J. Appl. Polym. Sci. 88: 369–379.

    Article  CAS  Google Scholar 

  83. Sanfilippo, C., N. D’Antona, and G. Nicolosi (2004) Chloroperoxidase from Caldariomyces fumago is active in the presence of an ionic liquid as co-solvent. Biotechnol. Lett. 26: 1815–1819.

    Article  CAS  Google Scholar 

  84. Chiappe, C., L. Neri, and D. Pieraccini (2006) Application of hydrophilic ionic liquids as co-solvents in chloroperoxidase catalyzed oxidations. Tetrahedron Lett. 47: 5089–5093.

    Article  CAS  Google Scholar 

  85. Tavares, A. P. M., O. Rodriguez, and E. A. Macedo (2008) Ionic liquids as alternative co-solvents for laccase: study of enzyme activity and stability. Biotechnol. Bioeng. 101: 201–207.

    Article  CAS  Google Scholar 

  86. Shipovskov, S., H. Q. N. Gunaratne, K. R. Seddon, and G. Stephens (2008) Catalytic activity of laccases in aqueous solutions of ionic liquids. Green Chem. 10: 806–810.

    Article  CAS  Google Scholar 

  87. Lutz-Wahl, S., E., Trost, B. Wagner, A. Manns, and L. Fischer (2006) Performance of D-amino acid oxidase in presence of ionic liquids. J. Biotechnol. 124: 163–171.

    Article  CAS  Google Scholar 

  88. Shi, X., M. Zong, C. Meng, and Y. H. Guo (2005) Catalytic characteristics of horse liver alcohol dehydrogenase in a medium containing ionic liquid [bmim]Cl. Chin. J. Catal. 26: 982–986.

    CAS  Google Scholar 

  89. Fujita, K., N. Nakamura, K. Igarashi, M. Samejima, and H. Ohno (2009) Biocatalytic oxidation of cellobiose in a hydrated ionic liquid. Green Chem. 11: 351–354.

    Article  CAS  Google Scholar 

  90. de Gonzalo, G., I. Lavandera, K. Durchschein, D. Wurm, K. Faber, and W. Kroutil (2007) Asymmetric biocatalytic reduction of ketones using hydroxy-functionalised water-miscible ionic liquids as solvents. Tetrahedron Asymm. 18: 2541–2546.

    Article  CAS  Google Scholar 

  91. Okochi, M., I. Nakagawa, T. Kobayashi, S. Hayashi, S. Furusaki, and H. Honda (2007) Enhanced activity of 3-α-hydroxysteroid dehydrogenase by addition of the cosolvent 1-butyl-3-methylimidazolium (L)-lactate in aqueous phase of biphasic systems for reductive production of steroids. J. Biotechnol. 128: 376–382.

    Article  CAS  Google Scholar 

  92. Walker, A. J. and N. C. Bruce (2004) Combined biological and chemical catalysis in the preparation of oxycodone. Tetrahedron 60: 561–568.

    Article  CAS  Google Scholar 

  93. Walker, A. J. and N. C. Bruce (2004) Cofactor-dependent enzyme catalysis in functionalized ionic solvents. Chem. Commun. 22: 2570–2571.

    Article  CAS  Google Scholar 

  94. Ganske, F. and U. Bornscheuer (2006) Growth of Escherichia coli, Pichia pastoris, and Bacillus cereus in the presence of the ionic liquids [BMIM][BF4] and [BMIM][PF6] and organic solvents. Biotechnol. Lett. 28: 465–469.

    Article  CAS  Google Scholar 

  95. He, J., L. Zhou, P. Wang, and L. Zu (2009) Microbial reduction of ethyl acetoacetate to ethyl (R)-3-hydroxybutyrate in an ionic liquid containing system. Proc. Biochem. 44: 316–321.

    Article  CAS  Google Scholar 

  96. Lou, W., M. Zong, and T. J. Smith (2006) Use of ionic liquids to improve whole-cell biocatalytic asymmetric reduction of acetyltrimethylsilane for efficient synthesis of enantiopure (S)-1-trimethylsilylethanol. Green Chem. 8: 147–155.

    Article  CAS  Google Scholar 

  97. Cornmell, R. J., C. L. Winder, S. Schuler, R. Goodacre, and G. Stephens (2008) Using a biphasic ionic liquid/water reaction system to improve oxygenase-catalysed biotransformation with whole cells. Green Chem. 10: 685–691.

    Article  CAS  Google Scholar 

  98. Pfruender, H., M. Amidjojo, U. Kragl, and D. Weuster-Botz (2004) Efficient whole-cell biotransformation in a biphasic ionic liquid/water System. Angew. Chem. Int. Ed. 43: 4529–4531.

    Article  CAS  Google Scholar 

  99. Pfruender, H., R. Jones, and D. Weuster-Botz (2006) Water immiscible ionic liquids as solvents for whole cell biocatalysis. J. Biotechnol. 124: 182–190.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romas Kazlauskas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorke, J., Srienc, F. & Kazlauskas, R. Toward advanced ionic liquids. Polar, enzyme-friendly solvents for biocatalysis. Biotechnol Bioproc E 15, 40–53 (2010). https://doi.org/10.1007/s12257-009-3079-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-009-3079-z

Keywords

Navigation