Skip to main content
Log in

US132 Cyclodextrin Glucanotransferase Engineering by Random Mutagenesis for an Anti-Staling Purpose

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The use of the cyclodextrin glucanotransferase (CGTase) of the US132 strain, which is an effective anti-staling agent, has been hampered by its high cyclization activity. Since that random mutagenesis using error-prone PCR is nowadays a method of choice for enzymes engineering, we have optimized this method by adjusting manganese concentration in order to obtain a high percentage of active CGTase mutants. Therefore, the amplification of the gene encoding the US132 CGTase was performed using a MnCl2 concentration ranging between 0 and 0.5 mM. The finding showed that a manganese concentration of 0.04 mM allowed for 90 % of active mutants. A simple method to rapidly screen the obtained mutants was also developed. After the examination of a small library (of less than 1000 clones), the active mutant named MJ13 was selected for a significant decrease in the cyclization activity, thereby showing a remarkable change in the enzyme specificity towards starch dextrinizing. Sequence analysis showed that MJ13 is a triple mutant with two mutations in the catalytic domain (K47E and S382P) and one substitution in the starch binding domain (N655S).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ahn, H. J., Li, C., Cho, H. B., Park, S., Chang, P. S., & Kim, Y. W. (2015). Enzymatic synthesis of 3-O-α-maltosyl-l-ascorbate using an engineered cyclodextrin glucanotransferase. Food Chemistry, 169, 366–371.

    Article  CAS  Google Scholar 

  2. Quin, M. B., & Schmidt-Dannert, C. (2011). Engineering of biocatalysts: from evolution to creation. ACS Catalysis, 1, 1017–1021.

    Article  CAS  Google Scholar 

  3. Jemli, S., Ayadi-Zouari, D., Hlima, H. B., & Bejar, S. (2016). Biocatalysts: application and engineering for industrial purposes. Critical Reviews in Biotechnology, 36, 246–258.

    Article  CAS  Google Scholar 

  4. Jung, S. T., Kang, T. H., & Kim, D. (2014). Engineering an aglycosylated Fc variant for enhanced FcγRI engagement and pH-dependent human FcRn binding. Biotechnology Bioprocess Engineering, 19, 780–789.

    Article  CAS  Google Scholar 

  5. Shan, S., Zhang, Y., Ding, X., Hu, S., Sun, Y., Yu, Z., et al. (2011). A Cry1Ac toxin variant generated by directed evolution has enhanced toxicity against lepidopteran insects. Current Microbiology, 62, 358–365.

    Article  CAS  Google Scholar 

  6. Foo, J. L., Ching, C. B., Chang, M. W., & Leong, S. S. (2012). The imminent role of protein engineering in synthetic biology. Biotechnology Advances, 30, 541–549.

    Article  CAS  Google Scholar 

  7. Wen, F., Nair, N. U., & Zhao, H. (2009). Protein engineering in designing tailored enzymes and microorganisms for biofuels production. Current Opinion in Biotechnology, 20, 412–419.

    Article  CAS  Google Scholar 

  8. Hou, L. (2009). Novel methods of genome shuffling in Saccharomyces cerevisiae. Biotechnology Letters, 31, 671–677.

    Article  CAS  Google Scholar 

  9. Li, W., Chen, G., Gu, L., Zeng, W., & Liang, Z. (2014). Genome shuffling of Aspergillus niger for improving transglycosylation activity. Applied biochemistry and biotechnology, 172, 50–61.

    Article  CAS  Google Scholar 

  10. Xu, B., Jin, Z., Wang, H., Jin, Q., Jin, X., & Cen, P. (2008). Evolution of Streptomyces pristinaespiralis for resistance and production of pristinamycin by genome shuffling. Applied microbiology and biotechnology, 80, 261–267.

    Article  CAS  Google Scholar 

  11. Wang, T. W., Zhu, H., Ma, X. Y., Zhang, T., Ma, Y. S., & Wei, D. Z. (2006). Mutant library construction in directed molecular evolution: casting a wider net. Molecular Biotechnology, 34, 55–68.

    Article  Google Scholar 

  12. Obruca, S., Snajdar, O., Svoboda, Z., & Marova, I. (2013). Application of random mutagenesis to enhance the production of polyhydroxyalkanoates by Cupriavidus necator H16 on waste frying oil. World Journal of Microbiology and Biotechnology, 29, 2417–2428.

    Article  CAS  Google Scholar 

  13. Pfeifer, G. P., You, Y. H., & Besaratinia, A. (2005). Mutations induced by ultraviolet light. Mutation Research, 571, 19–31.

    Article  CAS  Google Scholar 

  14. Sangkharak, K., & Prasertsan, P. (2013). The production of polyhydroxyalkanoate by Bacillus licheniformis using sequential mutagenesis and optimization. Biotechnology and bioprocess engineering, 18, 272–279.

    Article  CAS  Google Scholar 

  15. McCullum, E. O., Williams, B. A., Zhang, J., & Chaput, J. C. (2010). Random mutagenesis by error-prone PCR. Methods in Molecular Biology, 634, 103–109.

    Article  CAS  Google Scholar 

  16. Kotzia, G. A., & Labrou, N. E. (2009). Engineering thermal stability of l-asparaginase by in vitro directed evolution. FEBS Journal, 276, 1750–1761.

    Article  CAS  Google Scholar 

  17. Minamoto, T., Wadab, E., & Shimizu, I. (2012). A new method for random mutagenesis by error-prone polymerase chain reaction using heavy water. Journal of Biotechnology, 157, 71–74.

    Article  CAS  Google Scholar 

  18. Jemli, S., Ben-Ali, M., Ben-Hlima, H., Khemakhem, B., & Bejar, S. (2012). Mutations affecting the activity of the cyclodextrin glucanotransferase of Paenibacillus pabuli US132: insights into the low hydrolytic activity of cyclodextrin glucanotransferases. Biologia, 67, 636–643.

    Article  CAS  Google Scholar 

  19. Leemhuis, H., Kragh, K. M., Dijkstra, B. W., & Dijkhuizen, L. (2003). Engineering cyclodextrin glycosyltransferase into a starch hydrolase with a high exo-specificity. Journal of Biotechnology, 103, 203–212.

    Article  CAS  Google Scholar 

  20. Leemhuis, H., Rozeboom, H. J., Wilbrink, M., Euverink, G. J., Dijkstra, B. W., & Dijkhuizen, L. (2003). Conversion of cyclodextrin glycosyltransferase into a starch hydrolase by directed evolution: the role of alanine 230 in acceptor subsite +1. Biochemistry, 42, 7518–7526.

    Article  CAS  Google Scholar 

  21. Shim, J. H., Kim, Y. W., Kim, T. J., Chae, H. Y., Park, J. H., Cha, H., et al. (2004). Improvement of cyclodextrin glucanotransferase as an antistaling enzyme by error-prone PCR. Protein Engineering, 17, 205–211.

    Article  CAS  Google Scholar 

  22. Jemli, S., Ben Messaoud, E., Ben Mabrouk, S., & Bejar, S. (2008). The cyclodextrin glycosyltransferase of Paenibacillus pabuli US132 strain: molecular characterization and overproduction of the recombinant enzyme. Journal Biomed Biotechnology,. doi:10.1155/2008/692573.

    Google Scholar 

  23. Trevizano, L. M., Ventorim, R. Z., De Rezende, S. T., Junior, F. P. S., & Guimarães, V. M. (2012). Thermostability improvement of Orpinomyces sp. xylanase by directed evolution. Journal of Molecular Catalysis B: Enzymatic, 81, 12–18.

    Article  CAS  Google Scholar 

  24. Cline, J., Braman, J. C., & Hogrefe, H. H. (1996). PCR fidelity of Pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Research, 24, 3546–3551.

    Article  CAS  Google Scholar 

  25. Eckert, K. A., & Kunkel, T. A. (1991). DNA polymerase fidelity and the polymerase chain reaction. PCR Methods Appl., 1, 17–24.

    Article  CAS  Google Scholar 

  26. Kelly, R. M., Leemhuis, H., & Dijkhuizen, L. (2007). Conversion of a cyclodextrin glucanotransferase into an alpha-amylase: assessment of directed evolution strategies. Biochemistry, 46, 11216–11222.

    Article  CAS  Google Scholar 

  27. Klein, C., & Schulz, G. E. (1991). Structure of cyclodextrin glycosyltransferase refined at 2.0 Ǻ resolution. Journal of Molecular Biology, 217, 737–750.

    Article  CAS  Google Scholar 

  28. Kelly, R. M., Dijkhuizen, L., & Leemhuis, H. (2009). The evolution of cyclodextrin glucanotransferase product specificity. Appl. Microbiol. Biot., 84, 119–133.

    Article  CAS  Google Scholar 

  29. Uitdehaag, J. C., Kalk, K. H., van Der Veen, B. A., Dijkhuizen, L., & Dijkstra, B. W. (1999). The cyclization mechanism of cyclodextrin glycosyltransferase (CGTase) as revealed by a gamma-cyclodextrin-CGTase complex at 1.8 Ǻ resolution. Journal of Biological Chemistry, 274, 34868–34876.

    Article  CAS  Google Scholar 

  30. Li, Z. F., Zhang, J. Y., Sun, Q., Wang, M., Gu, Z. B., Du, G. C., et al. (2009). Mutations of lysine 47 in cyclodextrin glycosyltransferase from Paenibacillus macerans enhance β-cyclodextrin specificity. Journal of Agriculture and Food Chemistry, 57, 8386–8391.

    Article  CAS  Google Scholar 

  31. Han, R., Liu, L., Shin, H. D., Chen, R. R., Du, G., & Chen, J. (2013). Site-saturation engineering of lysine 47 in cyclodextrin glycosyltransferase from Paenibacillus macerans to enhance substrate specificity towards maltodextrin for enzymatic synthesis of 2-O-D-glucopyranosyl-L-ascorbic acid (AA-2G). Applied Microbiology and Biotechnology, 97, 5851–5860.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Grants-in-Aid for Scientific Research from the Ministry of High Education and Scientific Research of Tunisia (Contrat Programme CBS-LMB). We are thankful to Mrs. Salma Karray, an EFL teacher, for her valuable language polishing services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Jemli.

Additional information

Sonia Jemli and Mouna Jaoua have equally contributed to the present study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jemli, S., Jaoua, M. & Bejar, S. US132 Cyclodextrin Glucanotransferase Engineering by Random Mutagenesis for an Anti-Staling Purpose. Mol Biotechnol 58, 551–557 (2016). https://doi.org/10.1007/s12033-016-9952-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-016-9952-z

Keywords

Navigation