Skip to main content

Advertisement

Log in

Assembly and Purification of Polyomavirus-Like Particles from Plants

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Polyomaviruses are small DNA viruses that have a history of use in biotechnology. The capsids of a number of species have been developed into experimental prophylactic and therapeutic virus-like particle (VLP) vaccines. In order to explore plants as a host for the expression and purification of polyomavirus-like particles, we have transiently expressed the major capsid protein, VP1, in Nicotiana benthamiana leaves. Deletion of a polybasic motif from the N-terminal region of VP1 resulted in increased expression as well as reduced necrosis of leaf tissue, which was associated with differences in subcellular localisation and reduced DNA binding by the deletion variant (ΔVP1). Self-assembled VLPs were recovered from tissue expressing both wild-type VP1 and ΔVP1 by density gradient ultracentrifugation. VLPs composed of ΔVP1 were more homogenous than wtVPLs and, unlike the latter, did not encapsidate nucleic acid. Such homogenous, empty VLPs are of great interest in biotechnology and nanotechnology. In addition, we show that both MPyV VLP variants assembled in plants can be produced with encapsidated foreign protein. Thus, this study demonstrates the utility of plant-based expression of polyomavirus-like particles and the suitability of this host for further developments in polyomavirus-based technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

AF4:

Asymmetric flow field-flow fractionation

DLS:

Dynamic light scattering

Dpi:

Days post-infiltration

GFP:

Green fluorescent protein

NLS:

Nuclear localisation signal

PBS:

Phosphate-buffered saline

TEM:

Transmission electron microscopy

VLP:

Virus-like particle

wt:

Wild-type

References

  1. Abbing, A., Blaschke, U. K., Grein, S., Kretschmar, M., Stark, C. M., Thies, M. J., et al. (2004). Efficient intracellular delivery of a protein and a low molecular weight substance via recombinant polyomavirus-like particles. The Journal of Biological Chemistry, 279, 27410–27421.

    Article  CAS  Google Scholar 

  2. Aljabali, A. A., Sainsbury, F., Lomonossoff, G. P., & Evans, D. J. (2010). Cowpea mosaic virus unmodified empty viruslike particles loaded with metal and metal oxide. Small (Weinheim an der Bergstrasse, Germany), 6, 818–821.

    Article  CAS  Google Scholar 

  3. Anggraeni, M. R., Connors, N. K., Wu, Y., Chuan, Y. P., Lua, L. H. L., & Middelberg, A. P. J. (2013). Sensitivity of immune response quality to influenza helix 190 antigen structure displayed on a modular virus-like particle. Vaccine, 31, 4428–4435.

    Article  CAS  Google Scholar 

  4. Barouch, D. H., & Harrison, S. C. (1994). Interactions among the major and minor coat proteins of polyomavirus. Journal of Virology, 68, 3982–3989.

    CAS  Google Scholar 

  5. Benchabane, M., Goulet, C., Rivard, D., Faye, L., Gomord, V., & Michaud, D. (2008). Preventing unintended proteolysis in plant protein biofactories. Plant Biotechnology Journal, 6, 633–648.

    Article  CAS  Google Scholar 

  6. Boura, E., Liebl, D., Spisek, R., Fric, J., Marek, M., Stokrova, J., et al. (2005). Polyomavirus EGFP-pseudocapsids: Analysis of model particles for introduction of proteins and peptides into mammalian cells. FEBS Letters, 579, 6549–6558.

    Article  CAS  Google Scholar 

  7. Chang, D., Cai, X., & Consigli, R. A. (1993). Characterization of the DNA binding properties of polyomavirus capsid protein. Journal of Virology, 67, 6327–6331.

    CAS  Google Scholar 

  8. Chen, Q., & Lai, H. (2013). Plant-derived virus-like particles as vaccines. Human Vaccines and Immunotherapy, 9, 26–49.

    Article  CAS  Google Scholar 

  9. Chen, X. S., Stehle, T., & Harrison, S. C. (1998). Interaction of polyomavirus internal protein VP2 with the major capsid protein VP1 and implications for participation of VP2 in viral entry. The EMBO Journal, 17, 3233–3240.

    Article  CAS  Google Scholar 

  10. Chuan, Y. P., Fan, Y. Y., Lua, L., & Middelberg, A. P. J. (2008). Quantitative analysis of virus-like particle size and distribution by field-flow fractionation. Biotechnology and Bioengineering, 99, 1425–1433.

    Article  CAS  Google Scholar 

  11. Connors, N. K., Wu, Y., Lua, L. H. L., & Middelberg, A. P. J. (2014). Improved fusion tag cleavage strategies in the downstream processing of self-assembling virus-like particle vaccines. Food and Bioproducts Processing, 92, 143–151.

    Article  CAS  Google Scholar 

  12. DeCaprio, J. A., & Garcea, R. L. (2013). A cornucopia of human polyomaviruses. Nature Reviews Microbiology, 11, 264–276.

    Article  CAS  Google Scholar 

  13. Friedmann, T. (1976). Structural proteins of polyoma virus: Proteolytic degradation of virion proteins by exogenous and by virion-associated proteases. Journal of Virology, 20, 520–526.

    CAS  Google Scholar 

  14. Friedmann, T., & Haas, M. (1970). Rapid concentration and purification of polyoma virus and SV40 with polyethylene glycol. Virology, 42, 248–250.

    Article  CAS  Google Scholar 

  15. Gillock, E., & Consigli, R. (1998). Truncation of the nuclear localization signal of polyomavirus VP1 results in a loss of DNA packaging when expressed in the baculovirus system. Virus Research, 58, 149–160.

    Article  CAS  Google Scholar 

  16. Goulet, C., Khalf, M., Sainsbury, F., D’Aoust, M. A., & Michaud, D. (2012). A protease activity-depleted environment for heterologous proteins migrating towards the leaf cell apoplast. Plant Biotechnology Journal, 10, 83–94.

    Article  CAS  Google Scholar 

  17. Grebenok, R. J., Pierson, E., Lambert, G. M., Gong, F. C., Afonso, C. L., Haldeman-Cahill, R., et al. (1997). Green-fluorescent protein fusions for efficient characterization of nuclear targeting. The Plant Journal, 11, 573–586.

    Article  CAS  Google Scholar 

  18. Leavitt, A. D., Roberts, T. M., & Garcea, R. L. (1985). Polyoma virus major capsid protein, VP1. Purification after high level expression in Escherichia coli. The Journal of Biological Chemistry, 260, 12803–12809.

    CAS  Google Scholar 

  19. Lipin, D. I., Chuan, Y. P., Lua, L. H. L., & Middelberg, A. P. J. (2008). Encapsulation of DNA and non-viral protein changes the structure of murine polyomavirus virus-like particles. Archives of Virology, 153, 2027–2039.

    Article  CAS  Google Scholar 

  20. Lua, L. H. L., Connors, N. K., Sainsbury, F., Chuan, Y. P., Wibowo, N., & Middelberg, A. P. J. (2014). Bioengineering virus-like particles as vaccines. Biotechnology and Bioengineering, 111, 425–440.

    Article  CAS  Google Scholar 

  21. Maclean, J., Koekemoer, M., Olivier, A. J., Stewart, D., Hitzeroth, I. I., Rademacher, T., et al. (2007). Optimization of human papillomavirus type 16 (HPV-16) L1 expression in plants: Comparison of the suitability of different HPV-16 L1 gene variants and different cell-compartment localization. Journal of General Virology, 88, 1460–1469.

    Article  CAS  Google Scholar 

  22. Mandal, M. K., Fischer, R., Schillberg, S., & Schiermeyer, A. (2014). Inhibition of protease activity by antisense RNA improves recombinant protein production in Nicotiana tabacum cv. Bright yellow 2 (BY-2) suspension cells. Biotechnology Journal, 9, 1065–1073.

    Article  CAS  Google Scholar 

  23. Matic, S., Masenga, V., Poli, A., Rinaldi, R., Milne, R. G., Vecchiati, M., & Noris, E. (2012). Comparative analysis of recombinant human papillomavirus 8 L1 production in plants by a variety of expression systems and purification methods. Plant Biotechnology Journal, 10, 410–421.

    Article  CAS  Google Scholar 

  24. Merkle, T. (2003). Nucleo-cytoplasmic partitioning of proteins in plants: Implications for the regulation of environmental and developmental signalling. Current Genetics, 44, 231–260.

    Article  CAS  Google Scholar 

  25. Middelberg, A. P., Rivera-Hernandez, T., Wibowo, N., Lua, L. H., Fan, Y., Magor, G., et al. (2011). A microbial platform for rapid and low-cost virus-like particle and capsomere vaccines. Vaccine, 29, 7154–7162.

    Article  CAS  Google Scholar 

  26. Moreland, R., Montross, L., & Garcea, R. (1991). Characterization of the DNA-binding properties of the polyomavirus capsid protein VP1. Journal of Virology, 65, 1168–1176.

    CAS  Google Scholar 

  27. Moreland, R. B., & Garcea, R. L. (1991). Characterization of a nuclear localization sequence in the polyomavirus capsid protein VP1. Virology, 185, 513–518.

    Article  CAS  Google Scholar 

  28. Nilsson, J., Miyazaki, N., Xing, L., Wu, B., Hammar, L., Li, T. C., et al. (2005). Structure and assembly of a T = 1 virus-like particle in BK polyomavirus. Journal of Virology, 79, 5337–5345.

    Article  CAS  Google Scholar 

  29. Pastrana, D. V., Brennan, D. C., Cuburu, N., Storch, G. A., Viscidi, R. P., Randhawa, P. S., & Buck, C. B. (2012). Neutralization serotyping of BK polyomavirus infection in kidney transplant recipients. PLoS Pathogens, 8, e1002650.

    Article  CAS  Google Scholar 

  30. Paul, M., & Ma, J. K. (2011). Plant-made pharmaceuticals: Leading products and production platforms. Biotechnology and Applied Biochemistry, 58, 58–67.

    Article  CAS  Google Scholar 

  31. Rayment, I., Baker, T. S., Caspar, D. L., & Murakami, W. T. (1982). Polyoma virus capsid structure at 22.5 A resolution. Nature, 295, 110–115.

    Article  CAS  Google Scholar 

  32. Rivera-Hernandez, T., Hartas, J., Wu, Y., Chuan, Y. P., Lua, L. H., Good, M., et al. (2013). Self-adjuvanting modular virus-like particles for mucosal vaccination against group A streptococcus (GAS). Vaccines, 31, 1950–1955.

    Article  CAS  Google Scholar 

  33. Robert, S., Khalf, M., Goulet, M. C., D’Aoust, M. A., Sainsbury, F., & Michaud, D. (2013). Protection of recombinant mammalian antibodies from development-dependent proteolysis in leaves of Nicotiana benthamiana. PLoS One, 8, e70203.

    Article  CAS  Google Scholar 

  34. Sainsbury, F., & Lomonossoff, G. P. (2008). Extremely high-level and rapid transient protein production in plants without the use of viral replication. Plant Physiology, 148, 1212–1218.

    Article  CAS  Google Scholar 

  35. Sainsbury, F., & Lomonossoff, G. P. (2014). Transient expressions of synthetic biology in plants. Current Opinion in Plant Biology, 19, 1–7.

    Article  CAS  Google Scholar 

  36. Sainsbury, F., Thuenemann, E. C., & Lomonossoff, G. P. (2009). pEAQ: Versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnology Journal, 7, 682–693.

    Article  CAS  Google Scholar 

  37. Salunke, D. M., Caspar, D. L., & Garcea, R. L. (1986). Self-assembly of purified polyomavirus capsid protein VP1. Cell, 46, 895–904.

    Article  CAS  Google Scholar 

  38. Salunke, D. M., Caspar, D. L., & Garcea, R. L. (1989). Polymorphism in the assembly of polyomavirus capsid protein VP1. Biophysical Journal, 56, 887–900.

    Article  CAS  Google Scholar 

  39. Sasnauskas, K., Bulavaite, A., Hale, A., Jin, L., Knowles, W. A., Gedvilaite, A., et al. (2002). Generation of recombinant virus-like particles of human and non-human polyomaviruses in yeast Saccharomyces cerevisiae. Intervirology, 45, 308–317.

    Article  CAS  Google Scholar 

  40. Sasnauskas, K., Buzaite, O., Vogel, F., Jandrig, B., Razanskas, R., Staniulis, J., et al. (1999). Yeast cells allow high-level expression and formation of polyomavirus-like particles. Biological Chemistry, 380, 381–386.

    Article  CAS  Google Scholar 

  41. Schumacher, T., Ruehland, C., Schultheiss, C., Brinkman, M., Roedel, F., Reiser, C. O., et al. (2007). Advanced antigen delivery of murine survivin: Chimeric virus-like particles in cancer vaccine research. International Journal of Biomedical Science: IJBS, 3, 199–205.

    CAS  Google Scholar 

  42. Scotti, N., & Rybicki, E. (2013). Virus-like particles produced in plants as potential vaccines. Expert Reviews Vaccines, 12, 211–224.

    Article  CAS  Google Scholar 

  43. Simon, C., Klose, T., Herbst, S., Han, B. G., Sinz, A., Glaeser, R. M., et al. (2014). Disulfide linkage and structure of highly stable yeast-derived virus-like particles of murine polyomavirus. The Journal of Biological Chemistry, 289, 10411–10418.

    Article  CAS  Google Scholar 

  44. Stehle, T., & Harrison, S. (1996). Crystal structures of murine polyomavirus in complex with straight-chain and branched-chain sialyloligosaccharide receptor fragments. Structure, 4, 183–194.

    Article  CAS  Google Scholar 

  45. Tegerstedt, K., Lindencrona, J., Curcio, C., Andreasson, K., Tullus, C., Forni, G., et al. (2005). A single vaccination with polyomavirus VP1/VP2Her2 virus-like particles prevents outgrowth of Her-2/neu-expressing tumors. Cancer Research, 65, 5953–5957.

    Article  CAS  Google Scholar 

  46. Teunissen, E. A., de Raad, M., & Mastrobattista, E. (2013). Production and biomedical applications of virus-like particles derived from polyomaviruses. Journal of Controlled Release, 172, 305–321.

    Article  CAS  Google Scholar 

  47. Voinnet, O., Rivas, S., Mestre, P., & Baulcombe, D. (2003). An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. The Plant Journal, 33, 949–956.

    Article  CAS  Google Scholar 

  48. Wen, A. M., Shukla, S., Saxena, P., Aljabali, A. A., Yildiz, I., Dey, S., et al. (2012). Interior engineering of a viral nanoparticle and its tumor homing properties. Biomacromolecules, 13, 3990–4001.

    Article  CAS  Google Scholar 

  49. White, M. K., Gordon, J., & Khalili, K. (2013). The rapidly expanding family of human polyomaviruses: Recent developments in understanding their life cycle and role in human pathology. PLoS Pathogens, 9, e1003206.

    Article  CAS  Google Scholar 

  50. Wu, W., Hsiao, S. C., Carrico, Z. M., & Francis, M. B. (2009). Genome-free viral capsids as multivalent carriers for taxol delivery. Angewandte Chemie, 48, 9493–9497.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Alexandra Depelsenaire for assistance with confocal microscopy. Professor George Lomonossoff and Plant Biosciences Limited are thanked for providing the pEAQ-HT plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Sainsbury.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1254 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catrice, E.V.B., Sainsbury, F. Assembly and Purification of Polyomavirus-Like Particles from Plants. Mol Biotechnol 57, 904–913 (2015). https://doi.org/10.1007/s12033-015-9879-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-015-9879-9

Keywords