Skip to main content

Advertisement

Log in

Glucose Metabolism, Hyperosmotic Stress, and Reprogramming of Somatic Cells

  • Reviews
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The availability of glucose and oxygen are important regulatory elements that help directing stem cell fate. In the undifferentiated state, stem cells, and their artificially reprogrammed equivalent-induced pluripotent stem cells (iPS) are characterized by limited oxidative capacity and active anaerobic glycolysis. Recent studies have shown that pluripotency—a characteristic of staminality—is associated with a poorly developed mitochondrial patrimony, while differentiation is accompanied by an activation of mitochondrial biogenesis. Besides being an important energy source in hypoxia, high glucose level results in hyperosmotic stress. The identification of specific metabolic pathways and biophysical factors that regulate stem cell fate, including high glucose in the extracellular medium, may therefore facilitate reprogramming efficiency and control the differentiation and fate of iPS cells, which are increasingly being explored as therapeutic tools. In this article, we review recent knowledge of the role of glucose metabolism and high glucose level as major anaerobic energy source, and a determinant of osmolarity as possible tools for reprogramming therapies in clinical applications. As in the diabetic setting hyperglycemia negatively affect the stem/progenitor cell fate and likely somatic reprogramming, we also discuss the in vivo potential transferability of the available in vitro findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Almeida, A., Bolanos, J. P., et al. (2010). E3 ubiquitin ligase APC/C-Cdh1 accounts for the Warburg effect by linking glycolysis to cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 107(2), 738–741.

    Article  CAS  Google Scholar 

  2. Ambasudhan, R., Talantova, M., et al. (2011). Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell, 9(2), 113–118.

    Article  CAS  Google Scholar 

  3. Angele, P., Yoo, J. U., et al. (2003). Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. Journal of Orthopaedic Research, 21(3), 451–457.

    Article  CAS  Google Scholar 

  4. Armstrong, L., Tilgner, K., et al. (2011). Human induced pluripotent stem cell lines show stress defense mechanisms and mitochondrial regulation similar to those of human embryonic stem cells. Stem Cells, 28(4), 661–673.

    Article  Google Scholar 

  5. Awad, H. A., Wickham, M. Q., et al. (2004). Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials, 25(16), 3211–3222.

    Article  CAS  Google Scholar 

  6. Balaban, N. Q., Schwarz, U. S., et al. (2001). Force and focal adhesion assembly: A close relationship studied using elastic micropatterned substrates. Nature Cell Biology, 3(5), 466–472.

    Article  CAS  Google Scholar 

  7. Bar-Even, A., Flamholz, A., et al. (2010). Rethinking glycolysis: On the biochemical logic of metabolic pathways. Nature Chemical Biology, 8(6), 509–517.

    Article  Google Scholar 

  8. Batten, B. E., Albertini, D. F., et al. (1987). Patterns of organelle distribution in mouse embryos during preimplantation development. American Journal of Anatomy, 178(2), 204–213.

    Article  CAS  Google Scholar 

  9. Beningo, K. A., Dembo, M., et al. (2001). Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. Journal of Cell Biology, 153(4), 881–888.

    Article  CAS  Google Scholar 

  10. Blundell, M. P., Demaison, C., et al. (1999). Quality of repopulation in nonobese diabetic severe combined immunodeficient mice engrafted with expanded cord blood CD34+ cells. Blood, 94(9), 3269–3270.

    CAS  Google Scholar 

  11. Bogan, J. S. (2012). Regulation of glucose transporter translocation in health and diabetes. Annual Review of Biochemistry, 81, 507–532.

    Article  CAS  Google Scholar 

  12. Bolanos, J. P., Almeida, A., et al. (2010). Glycolysis: A bioenergetic or a survival pathway? Trends in Biochemical Sciences, 35(3), 145–149.

    Article  CAS  Google Scholar 

  13. Caiazzo, M., Dell’anno, M. T., et al. (2011). Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature, 476(7359), 224–227.

    Article  CAS  Google Scholar 

  14. Chen, C. S., Alonso, J. L., et al. (2003). Cell shape provides global control of focal adhesion assembly. Biochemical and Biophysical Research Communications, 307(2), 355–361.

    Article  CAS  Google Scholar 

  15. Chen, Y. H., Lin, S. J., et al. (2007). High glucose impairs early and late endothelial progenitor cells by modifying nitric oxide-related but not oxidative stress-mediated mechanisms. Diabetes, 56(6), 1559–1568.

    Article  CAS  Google Scholar 

  16. Chicurel, M. E., Chen, C. S., et al. (1998). Cellular control lies in the balance of forces. Current Opinion in Cell Biology, 10(2), 232–239.

    Article  CAS  Google Scholar 

  17. Covello, K. L., Kehler, J., et al. (2006). HIF-2alpha regulates Oct-4: Effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes & Development, 20(5), 557–570.

    Article  CAS  Google Scholar 

  18. Cubbon, R. M., Kahn, M. B., et al. (2009). Effects of insulin resistance on endothelial progenitor cells and vascular repair. Clinical Science (London), 117(5), 173–190.

    Article  CAS  Google Scholar 

  19. Denker, H. W. (2006). Potentiality of embryonic stem cells: An ethical problem even with alternative stem cell sources. Journal of Medical Ethics, 32(11), 665–671.

    Article  Google Scholar 

  20. Deschepper, M., Oudina, K., et al. (2011). Survival and function of mesenchymal stem cells (MSCs) depend on glucose to overcome exposure to long-term, severe and continuous hypoxia. Journal of Cellular and Molecular Medicine, 15(7), 1505–1514.

    Article  CAS  Google Scholar 

  21. Dike, L. E., Chen, C. S., et al. (1999). Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. In Vitro Cellular and Developmental Biology, 35(8), 441–448.

    Article  CAS  Google Scholar 

  22. Egan, C. G., Lavery, R., et al. (2008). Generalised reduction of putative endothelial progenitors and CXCR4-positive peripheral blood cells in type 2 diabetes. Diabetologia, 51(7), 1296–1305.

    Article  CAS  Google Scholar 

  23. Facucho-Oliveira, J. M., & St John, J. C. (2009). The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Review, 5(2), 140–158.

    Article  CAS  Google Scholar 

  24. Fadini, G. P., Miorin, M., et al. (2005). Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. Journal of the American College of Cardiology, 45(9), 1449–1457.

    Article  CAS  Google Scholar 

  25. Fadini, G. P., Pucci, L., et al. (2007). Glucose tolerance is negatively associated with circulating progenitor cell levels. Diabetologia, 50(10), 2156–2163.

    Article  CAS  Google Scholar 

  26. Felice, F., Lucchesi, D., et al. (2010). Oxidative stress in response to high glucose levels in endothelial cells and in endothelial progenitor cells: Evidence for differential glutathione peroxidase-1 expression. Microvascular Research, 80(3), 332–338.

    Article  CAS  Google Scholar 

  27. Folkman, J., & Moscona, A. (1978). Role of cell shape in growth control. Nature, 273(5661), 345–349.

    Article  CAS  Google Scholar 

  28. Folmes, C. D., Nelson, T. J., et al. (2011). Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metabolism, 14(2), 264–271.

    Article  CAS  Google Scholar 

  29. Fu, J., Tay, S. S., et al. (2006). High glucose alters the expression of genes involved in proliferation and cell-fate specification of embryonic neural stem cells. Diabetologia, 49(5), 1027–1038.

    Article  CAS  Google Scholar 

  30. Gallagher, K. A., Liu, Z. J., et al. (2007). Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha. Journal of Clinical Investigation, 117(5), 1249–1259.

    Article  CAS  Google Scholar 

  31. Gong, Z., & Niklason, L. E. (2008). Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs). FASEB Journal, 22(6), 1635–1648.

    Article  CAS  Google Scholar 

  32. Görbe, A., Varga, Z. V., et al. (2013). Cytoprotection by the NO-donor SNAP against ischemia/reoxygenation injury in mouse embryonic stem cell-derived cardiomyocytes. Int J Immunopathol Pharmacol in press.

  33. Gordan, J. D., Bertout, J. A., et al. (2007). HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell, 11(4), 335–347.

    Article  CAS  Google Scholar 

  34. Gordan, J. D., Thompson, C. B., et al. (2007). HIF and c-Myc: Sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell, 12(2), 108–113.

    Article  CAS  Google Scholar 

  35. Guilak, F., Cohen, D. M., et al. (2009). Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell, 5(1), 17–26.

    Article  CAS  Google Scholar 

  36. Han, J. K., Lee, H. S., et al. (2008). Peroxisome proliferator-activated receptor-delta agonist enhances vasculogenesis by regulating endothelial progenitor cells through genomic and nongenomic activations of the phosphatidylinositol 3-kinase/Akt pathway. Circulation, 118(10), 1021–1033.

    Article  CAS  Google Scholar 

  37. Hoben, G. M., Koay, E. J., et al. (2008). Fibrochondrogenesis in two embryonic stem cell lines: Effects of differentiation timelines. Stem Cells, 26(2), 422–430.

    Article  Google Scholar 

  38. Huang, C. Y., Hagar, K. L., et al. (2004). Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells, 22(3), 313–323.

    Article  CAS  Google Scholar 

  39. Hwang, N. S., Varghese, S., et al. (2007). Morphogenetic signals from chondrocytes promote chondrogenic and osteogenic differentiation of mesenchymal stem cells. Journal of Cellular Physiology, 212(2), 281–284.

    Article  CAS  Google Scholar 

  40. Hwang, N. S., Varghese, S., et al. (2006). Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine-glycine-aspartate-modified hydrogels. Tissue Engineering, 12(9), 2695–2706.

    Article  CAS  Google Scholar 

  41. Ieda, M., Fu, J. D., et al. (2010). Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell, 142(3), 375–386.

    Article  CAS  Google Scholar 

  42. Ingber, D. (1991). Extracellular matrix and cell shape: Potential control points for inhibition of angiogenesis. Journal of Cellular Biochemistry, 47(3), 236–241.

    Article  CAS  Google Scholar 

  43. Ingber, D. E. (2006). Cellular mechanotransduction: Putting all the pieces together again. FASEB Journal, 20(7), 811–827.

    Article  CAS  Google Scholar 

  44. Jang, Y. Y., & Sharkis, S. J. (2007). A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood, 110(8), 3056–3063.

    Article  CAS  Google Scholar 

  45. Johnson, C. P., Tang, H. Y., et al. (2007). Forced unfolding of proteins within cells. Science, 317(5838), 663–666.

    Article  CAS  Google Scholar 

  46. Kawamura, T., Suzuki, J., et al. (2009). Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature, 460(7259), 1140–1144.

    Article  CAS  Google Scholar 

  47. Kloxin, A. M., Kasko, A. M., et al. (2009). Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science, 324(5923), 59–63.

    Article  CAS  Google Scholar 

  48. Krankel, N., Adams, V., et al. (2005). Hyperglycemia reduces survival and impairs function of circulating blood-derived progenitor cells. Arteriosclerosis Thrombosis and Vascular Biology, 25(4), 698–703.

    Article  Google Scholar 

  49. Le Belle, J. E., Orozco, N. M., et al. (2011). Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell, 8(1), 59–71.

    Article  Google Scholar 

  50. Leeper, N. J., Hunter, A. L., et al. (2012). Stem cell therapy for vascular regeneration: Adult, embryonic, and induced pluripotent stem cells. Circulation, 122(5), 517–526.

    Article  Google Scholar 

  51. Lehninger, A. L. (1971). Biochemistry and human welfare: Where now and whither? Federation Proceedings, 30(4), 1397–1402.

    CAS  Google Scholar 

  52. Leto, D., & Saltiel, A. R. (2012). Regulation of glucose transport by insulin: Traffic control of GLUT4. Nature Reviews Molecular Cell Biology, 13(6), 383–396.

    Article  CAS  Google Scholar 

  53. Loomans, C. J., de Koning, E. J., et al. (2004). Endothelial progenitor cell dysfunction: A novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes, 53(1), 195–199.

    Article  CAS  Google Scholar 

  54. Lum, J. J., Bui, T., et al. (2007). The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes & Development, 21(9), 1037–1049.

    Article  CAS  Google Scholar 

  55. Lunt, S. Y., & Vander Heiden, M. G. (2011). Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation. Annual Review of Cell and Developmental Biology, 27, 441–464.

    Article  CAS  Google Scholar 

  56. Ly, D. L., Waheed, F., et al. (2013). Hyperosmotic stress regulates the distribution and stability of myocardin-related transcription factor, a key modulator of the cytoskeleton. American Journal of Physiology, 304(2), C115–C127.

    Article  CAS  Google Scholar 

  57. Madonna, R. (2012). Human-induced pluripotent stem cells: In quest of clinical applications. Molecular Biotechnology, 52(2), 193–203.

    Article  CAS  Google Scholar 

  58. Madonna, R., Geng, Y. J., et al. (2009). Adipose tissue-derived stem cells: Characterization and potential for cardiovascular repair. Arteriosclerosis Thrombosis and Vascular Biology, 29(11), 1723–1729.

    Article  CAS  Google Scholar 

  59. Madonna, R., Shelat, H., et al. (2011). Aquaporin-1 is required for vascular development of human induced pluripotent stem cells following exposure to glucose-induced hyperosmolarity. Circulation AOS.701.01 (Abstract Oral Session).

  60. Manasek, F. J., Burnside, M. B., et al. (1972). Myocardial cell shape change as a mechanism of embryonic heart looping. Developmental Biology, 29(4), 349–371.

    Article  CAS  Google Scholar 

  61. Mauck, R. L., Yuan, X., et al. (2006). Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthritis Cartilage, 14(2), 179–189.

    Article  CAS  Google Scholar 

  62. McBride, H. M., Neuspiel, M., et al. (2006). Mitochondria: More than just a powerhouse. Current Biology, 16(14), R551–R560.

    Article  CAS  Google Scholar 

  63. McBride, S. H., Falls, T., et al. (2008). Modulation of stem cell shape and fate B: Mechanical modulation of cell shape and gene expression. Tissue Engineering Part A, 14(9), 1573–1580.

    Article  CAS  Google Scholar 

  64. Mylotte, L. A., Duffy, A. M., et al. (2008). Metabolic flexibility permits mesenchymal stem cell survival in an ischemic environment. Stem Cells, 26(5), 1325–1336.

    Article  CAS  Google Scholar 

  65. Nelson, C. M., Jean, R. P., et al. (2005). Emergent patterns of growth controlled by multicellular form and mechanics. Proceedings of the National Academy of Sciences of the United States of America, 102(33), 11594–11599.

    Article  CAS  Google Scholar 

  66. Niklason, L. E., Gao, J., et al. (1999). Functional arteries grown in vitro. Science, 284(5413), 489–493.

    Article  CAS  Google Scholar 

  67. O’Cearbhaill, E. D., Punchard, M. A., et al. (2008). Response of mesenchymal stem cells to the biomechanical environment of the endothelium on a flexible tubular silicone substrate. Biomaterials, 29(11), 1610–1619.

    Article  Google Scholar 

  68. Panopoulos, A. D., Yanes, O., et al. (2011). The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Research, 22(1), 168–177.

    Article  Google Scholar 

  69. Prigione, A., & Adjaye, J. (2011). Modulation of mitochondrial biogenesis and bioenergetic metabolism upon in vitro and in vivo differentiation of human ES and iPS cells. International Journal of Developmental Biology, 54(11–12), 1729–1741.

    Google Scholar 

  70. Rafalski, V. A., Mancini, E., et al. (2012). Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate. Journal of Cell Science, 125(Pt 23), 5597–5608.

    Article  CAS  Google Scholar 

  71. Rao, M., & Condic, M. L. (2008). Alternative sources of pluripotent stem cells: Scientific solutions to an ethical dilemma. Stem Cells and Development, 17(1), 1–10.

    Article  Google Scholar 

  72. Raya, A., Rodriguez-Piza, I., et al. (2009). Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature, 460(7251), 53–59.

    Article  CAS  Google Scholar 

  73. Riveline, D., Zamir, E., et al. (2001). Focal contacts as mechanosensors: Externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. Journal of Cell Biology, 153(6), 1175–1186.

    Article  CAS  Google Scholar 

  74. Saitoh, S., Takahashi, I., et al. (2000). Compressive force promotes chondrogenic differentiation and hypertrophy in midpalatal suture cartilage in growing rats. Anatomical Record, 260(4), 392–401.

    Article  CAS  Google Scholar 

  75. Sawada, Y., Tamada, M., et al. (2006). Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell, 127(5), 1015–1026.

    Article  CAS  Google Scholar 

  76. Schupp, M., & Lazar, M. A. (2010). Fingered for a fat fate. Cell Metabolism, 11(4), 244–245.

    Article  CAS  Google Scholar 

  77. Seeger, F. H., Haendeler, J., et al. (2005). p38 mitogen-activated protein kinase downregulates endothelial progenitor cells. Circulation, 111(9), 1184–1191.

    Article  CAS  Google Scholar 

  78. Sniadecki, N. J., Anguelouch, A., et al. (2007). Magnetic microposts as an approach to apply forces to living cells. Proceedings of the National Academy of Sciences of the United States of America, 104(37), 14553–14558.

    Article  CAS  Google Scholar 

  79. Sordella, R., Jiang, W., et al. (2003). Modulation of Rho GTPase signaling regulates a switch between adipogenesis and myogenesis. Cell, 113(2), 147–158.

    Article  CAS  Google Scholar 

  80. Spinetti, G., Kraenkel, N., et al. (2008). Diabetes and vessel wall remodelling: From mechanistic insights to regenerative therapies. Cardiovascular Research, 78(2), 265–273.

    Article  CAS  Google Scholar 

  81. Su, Y., Liu, X. M., et al. (2008). Endothelial dysfunction in impaired fasting glycemia, impaired glucose tolerance, and type 2 diabetes mellitus. American Journal of Cardiology, 102(4), 497–498.

    Article  CAS  Google Scholar 

  82. Sukharev, S., & Corey, D. P. (2004). Mechanosensitive channels: Multiplicity of families and gating paradigms. Science’s STKE, 2004(219), re4.

    Google Scholar 

  83. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    Article  CAS  Google Scholar 

  84. Tan, J. L., Tien, J., et al. (2003). Cells lying on a bed of microneedles: An approach to isolate mechanical force. Proceedings of the National Academy of Sciences of the United States of America, 100(4), 1484–1489.

    Article  CAS  Google Scholar 

  85. Tepper, O. M., Galiano, R. D., et al. (2002). Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation, 106(22), 2781–2786.

    Article  Google Scholar 

  86. Varum, S., Rodrigues, A. S., et al. (2011). Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS ONE, 6(6), e20914.

    Article  CAS  Google Scholar 

  87. Vats, A., Bielby, R. C., et al. (2005). Stem cells. Lancet, 366(9485), 592–602.

    Article  CAS  Google Scholar 

  88. Wang, H., Riha, G. M., et al. (2005). Shear stress induces endothelial differentiation from a murine embryonic mesenchymal progenitor cell line. Arteriosclerosis Thrombosis and Vascular Biology, 25(9), 1817–1823.

    Article  CAS  Google Scholar 

  89. Westfall, S. D., Sachdev, S., et al. (2008). Identification of oxygen-sensitive transcriptional programs in human embryonic stem cells. Stem Cells and Development, 17(5), 869–881.

    Article  CAS  Google Scholar 

  90. Yamamoto, K., Sokabe, T., et al. (2005). Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro. American Journal of Physiology, 288(4), H1915–H1924.

    CAS  Google Scholar 

  91. Yang, Y., Relan, N. K., et al. (1999). Embryonic mesenchymal cells share the potential for smooth muscle differentiation: Myogenesis is controlled by the cell’s shape. Development, 126(13), 3027–3033.

    CAS  Google Scholar 

  92. Ye, Z., Zhan, H., et al. (2009). Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood, 114(27), 5473–5480.

    Article  CAS  Google Scholar 

  93. Yoshida, Y., Takahashi, K., et al. (2009). Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell, 5(3), 237–241.

    Article  CAS  Google Scholar 

  94. Zheng, H., Dai, T., et al. (2008). SDF-1alpha/CXCR4 decreases endothelial progenitor cells apoptosis under serum deprivation by PI3K/Akt/eNOS pathway. Atherosclerosis, 201(1), 36–42.

    Article  CAS  Google Scholar 

  95. Zheng, H., Shen, C. J., et al. (2010). Stromal cell-derived factor 1alpha reduces senescence of endothelial progenitor subpopulation in lectin-binding and DiLDL-uptaking cell through telomerase activation and telomere elongation. Journal of Cellular Physiology, 223(3), 757–763.

    CAS  Google Scholar 

  96. Zhu, S., Li, W., et al. (2010). Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell, 7(6), 651–655.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Istituto Nazionale Ricerche Cardiovascolari (INRC) and CARIPLO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele De Caterina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madonna, R., Görbe, A., Ferdinandy, P. et al. Glucose Metabolism, Hyperosmotic Stress, and Reprogramming of Somatic Cells. Mol Biotechnol 55, 169–178 (2013). https://doi.org/10.1007/s12033-013-9668-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-013-9668-2

Keywords

Navigation