Skip to main content

Advertisement

Log in

Development of Defined Microbial Population Standards Using Fluorescence Activated Cell Sorting for the Absolute Quantification of S. aureus Using Real-Time PCR

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

In this article, four types of standards were assessed in a SYBR Green-based real-time PCR procedure for the quantification of Staphylococcus aureus (S. aureus) in DNA samples. The standards were purified S. aureus genomic DNA (type A), circular plasmid DNA containing a thermonuclease (nuc) gene fragment (type B), DNA extracted from defined populations of S. aureus cells generated by Fluorescence Activated Cell Sorting (FACS) technology with (type C) or without purification of DNA by boiling (type D). The optimal efficiency of 2.016 was obtained on Roche LightCycler® 4.1. software for type C standards, whereas the lowest efficiency (1.682) corresponded to type D standards. Type C standards appeared to be more suitable for quantitative real-time PCR because of the use of defined populations for construction of standard curves. Overall, Fieller Confidence Interval algorithm may be improved for replicates having a low standard deviation in Cycle Threshold values such as found for type B and C standards. Stabilities of diluted PCR standards stored at −20°C were compared after 0, 7, 14 and 30 days and were lower for type A or C standards compared with type B standards. However, FACS generated standards may be useful for bacterial quantification in real-time PCR assays once optimal storage and temperature conditions are defined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mackay, I. M., Bustin, S. A., Andrade, J. M., Kubista, M., & Sloots, T. P. (2007). Quantification of microorganisms: Not human, not simple, not quick. In I. M. Mackay (Ed.), Real-time PCR in microbiology (pp. 133–182). Norfolk: Caister Academic Press.

    Google Scholar 

  2. Rossmanith, P., Krassnig, M., Wagner, M., & Hein, I. (2006). Detection of Listeria monocytogenes in food using a combined enrichment/real-time PCR method targeting the prfA gene. Research in Microbiology, 157, 763–771.

    Article  CAS  Google Scholar 

  3. Alarcon, B., Vicedo, B., & Aznar, R. (2006). PCR-based procedures for detection and quantification of Staphylococcus aureus and their application in food. Journal of Applied Microbiology, 100, 352–364.

    Article  CAS  Google Scholar 

  4. Hein, I., Lehner, A., Rieck, P., Klein, K., Brandl, E., & Wagner, M. (2001). Comparison of different approaches to quantify Staphylococcus aureus cells by real-time quantitative PCR and application of this technique for examination of cheese. Applied and Environmental Microbiology, 67, 3122–3126.

    Article  CAS  Google Scholar 

  5. Guilbaud, M., de Coppet, P., Bourion, F., Rachman, C., Prevost, H., & Dousset, X. (2005). Quantitative detection of Listeria monocytogenes in biofilms by real-time PCR. Applied and Environmental Microbiology, 71, 2190–2194.

    Article  CAS  Google Scholar 

  6. Chen, X., Wang, J., & Liu, J. (2008). Development of real-time PCR approach for cellulolytic bacteria quantification in the rumen. Chinese Journal of Animal Science, 44, 36–40.

    Google Scholar 

  7. Xu, W., Li, S.-f., Liu, J., & Hu, D. (2008). The development of duplex real-time PCR for detection of Listeria monocytogenes and Shigella. Zhonghua Weishengwuxue He Mianyixue Zazhi, 28, 946–950.

    CAS  Google Scholar 

  8. Loddenkotter, B., Becker, K., Hohoff, C., Brinkmann, B., & Bajanowski, T. (2005). Real-time quantitative PCR assay for the detection of Helicobacter pylori: No association with sudden infant death syndrome. International Journal of Legal Medicine, 119, 202–206.

    Article  Google Scholar 

  9. Sails, A. D., Fox, A. J., Bolton, F. J., Wareing, D. R. A., & Greenway, D. L. A. (2003). A real-time PCR assay for the detection of Campylobacter jejuni in foods after enrichment culture. Applied and Environmental Microbiology, 69, 1383–1390.

    Article  CAS  Google Scholar 

  10. Furet, J.-P., Quénée, P., & Tailliez, P. (2004). Molecular quantification of lactic acid bacteria in fermented milk products using real-time quantitative PCR. International Journal of Food Microbiology, 97, 197–207.

    Article  CAS  Google Scholar 

  11. Yang, H., Qu, L. W., Wimbrow, A. N., Jiang, X. P., & Sun, Y. P. (2007). Rapid detection of Listeria monocytogenes by nanoparticle-based immunomagnetic separation and real-time PCR. International Journal of Food Microbiology, 118, 132–138.

    Article  CAS  Google Scholar 

  12. Ott, S. J., Musfeldt, M., Ullmann, U., Hampe, J., & Schreiber, S. (2004). Quantification of intestinal bacterial populations by real-time PCR with a universal primer set and minor groove binder probes: A global approach to the enteric flora. Journal of Clinical Microbiology, 42, 2566–2572.

    Article  CAS  Google Scholar 

  13. Berrada, H., Soriano, J. M., Manes, J., & Pico, Y. (2006). Real-time quantitative PCR of Staphylococcus aureus and application in restaurant meals. Journal of Food Protection, 69, 106–111.

    CAS  Google Scholar 

  14. Berrada, H., Soriano, J. M., Pico, Y., & Manes, J. (2006). Quantification of Listeria monocytogenes in salads by real time quantitative PCR. International Journal of Food Microbiology, 107, 202–206.

    Article  CAS  Google Scholar 

  15. Takahashi, H., Iwade, Y., Konuma, H., & Hara-Kudo, Y. (2005). Development of a quantitative real-time PCR method for estimation of the total number of Vibrio parahaemolyticus in contaminated shellfish and seawater. Journal of Food Protection, 68, 1083–1088.

    CAS  Google Scholar 

  16. Ishii, S., Tago, K., & Senoo, K. (2010). Single-cell analysis and isolation for microbiology and biotechnology: Methods and applications. Applied Microbiology and Biotechnology, 86, 1281–1292.

    Article  CAS  Google Scholar 

  17. Shapiro, H. M. (2003). Overture. In Practical flow cytometry (4th ed., pp. 1–60). Hoboken, New Jersey: Wiley.

  18. Wallner, G., Fuchs, B., Spring, S., Beisker, W., & Amann, R. (1997). Flow sorting of microorganisms for molecular analysis. Applied and Environmental Microbiology, 63, 4223–4231.

    CAS  Google Scholar 

  19. Guillebault, D., Laghdass, M., Catala, P., Obernosterer, I., & Lebaron, P. (2010). An improved method of bacterial cell capture after flow cytometry cell sorting. Applied and Environmental Microbiology, 76, 7352–7355. doi:10.1128/AEM.00621-10.

    Google Scholar 

  20. Bowers, H. A., Brutemark, A., Carvalho, W. F., & Graneli, E. (2010). Combining flow cytometry and real-time PCR methodology to demonstrate consumption by Prymnesium parvum. Journal of the American Water Resources Association, 46, 133–143.

    Article  CAS  Google Scholar 

  21. Hoffmann, P. R., Gurary, A., Hoffmann, F. W., Saux, C. J. L., Teeters, K., Hashimoto, A. C., et al. (2007). A new approach for analyzing cellular infiltration during allergic airway inflammation. Journal of Immunological Methods, 328, 21–33.

    Article  CAS  Google Scholar 

  22. Hein, I., Jorgensen, H. J., Loncarevic, S., & Wagner, M. (2005). Quantification of Staphylococcus aureus in unpasteurised bovine and caprine milk by real-time PCR. Research in Microbiology, 156, 554–563.

    Article  CAS  Google Scholar 

  23. Ikeda, T., Tamate, N., Yamaguchi, K., & Makino, S. I. (2005). Quantitative analysis of Staphylococcus aureus in skimmed milk powder by real-time PCR. Journal of Veterinary Medical Science, 67, 1037–1041.

    Article  CAS  Google Scholar 

  24. Kim, C. H., Khan, M., Morin, D. E., Hurley, W. L., Tripathy, D. N., Kehrli, M., et al. (2001). Optimization of the PCR for detection of Staphylococcus aureus nuc gene in bovine milk. Journal of Dairy Science, 84, 74–83.

    Article  CAS  Google Scholar 

  25. Pinto, B., Chenoll, E., & Aznar, R. (2005). Identification and typing of food-borne Staphylococcus aureus by PCR-based techniques. Systematic and Applied Microbiology, 28, 340–352.

    Article  CAS  Google Scholar 

  26. Martinon, A., & Wilkinson, M. G. (2011). Selection of optimal primer sets for use in a duplex SYBR Green-based real time PCR protocol for the detection of L. monocytogenes and S. aureus in foods. Journal of Food Safety. doi:10.1111/j.1745-4565.2011.00301.x.

  27. Peters, R. P. H., van Agtmael, M. A., Gierveld, S., Danner, S. A., Groeneveld, A. B. J., Vandenbroucke-Grauls, C., et al. (2007). Quantitative detection of Staphylococcus aureus and Enterococcus faecalis DNA in blood to diagnose bacteremia in patients in the intensive care unit. Journal of Clinical Microbiology, 45, 3641–3646.

    Article  CAS  Google Scholar 

  28. Brakstad, O. G., Aasbakk, K., & Maeland, J. A. (1992). Detection of Staphylococcus aureus by polymerase chain reaction, amplification of the nuc gene. Journal of Clinical Microbiology, 30, 1654–1660.

    CAS  Google Scholar 

  29. Kao, C. L., King, C. C., Chao, D. Y., Wu, H. L., & Chang, G. J. (2005). Laboratory diagnosis of dengue virus infection: Current and future perspectives in clinical diagnosis and public health. Journal of Microbiology Immunology and Infection, 38, 5–16.

    Google Scholar 

  30. Anonymous. (2003). Applied biosystems—creating standard curves with genomic DNA or plasmid DNA templates for use in quantitative PCR. www6.appliedbiosystems.com/support/tutorials/pdf/quant_pcr.pdf.

  31. Mlynarczyk, A., Mlynarczyk, G., & Jeljaszewicz, J. (1998). The genome of Staphylococcus aureus: A review. Zentralblatt Fur Bakteriologie-International Journal of Medical Microbiology Virology Parasitology and Infectious Diseases, 287, 277–314.

    CAS  Google Scholar 

  32. Wang, Z., & Spadoro, J. (1998). Determination of target copy number of quantitative standards used in PCR-based diagnostic assays. In F. Ferré (Ed.), Gene quantification (pp. 31–44). Carlsbad: Birkhäuser.

    Chapter  Google Scholar 

  33. Queipo-Ortuno, M. I., Colmenero, J. D. D., Macias, M., Bravo, M. J., & Morata, P. (2008). Preparation of bacterial DNA template by boiling and effect of immunoglobulin G as an inhibitor in real-time PCR for serum samples from patients with brucellosis. Clinical and Vaccine Immunology, 15, 293–296.

    Article  CAS  Google Scholar 

  34. Aldea, C., Alvarez, C. P., Folgueira, L., Delgado, R., & Otero, J. R. (2002). Rapid detection of herpes simplex virus DNA in genital ulcers by real-time PCR using SYBR green I dye as the detection signal. Journal of Clinical Microbiology, 40, 1060–1062.

    Article  CAS  Google Scholar 

  35. Fernandez, F., Gutierrez, J., Sorlozano, A., Romero, J. M., Soto, M. J., & Ruiz-Cabello, F. (2006). Comparison of the SYBR Green and the hybridization probe format for real-time PCR detection of HHV-6. Microbiological Research, 161, 158–163.

    Article  CAS  Google Scholar 

  36. Tse, C., & Capeau, J. (2002). Quantification des acides nucléiques par PCR quantitative en temps réel. Annales de Biologie Clinique, 61, 279–293.

    Google Scholar 

  37. Anonymous. (2007). LightCycler ® 2.0 instrument operators’ manual—software version 4.1—manual B: For general laboratory use—Roche diagnostics GmbH. Mannheim, Germany.

  38. Yun, J. J., Heisler, L. E., Hwang, I. I. L., Wilkins, O., Lau, S. K., Hyrcza, M., et al. (2006). Genomic DNA functions as a universal external standard in quantitative real time PCR. Nucleic Acids Research, 34, e85.

    Article  Google Scholar 

  39. Verderio, P., Pizzamiglio, S., Gallo, F., & Ramsden, S. C. (2008). FCI: An R-based algorithm for evaluating uncertainty of absolute real-time PCR quantification. Bmc Bioinformatics, 9, 7.

    Article  Google Scholar 

  40. Visvikis, S., Schlenck, A., & Maurice, M. (1998). DNA extraction and stability for epidemiological studies. Clinical Chemistry and Laboratory Medicine, 36, 551–555.

    Article  CAS  Google Scholar 

  41. Farkas, D. H., Kaul, K. L., Wiedbrauk, D. L., & Kiechle, F. L. (1996). Specimen collection and storage for diagnostic molecular pathology investigation. Archives of Pathology and Laboratory Medicine, 120, 591–596.

    CAS  Google Scholar 

  42. Shapiro, H. M. (2003). Parameters and probes. In Practical flow cytometry (4th edn., pp. 273–410). Hoboken, New Jersey: Wiley.

  43. Braga, P. C., Bovio, C., Culici, M., & Dal Sasso, M. (2003). Flow cytometric assessment of susceptibilities of Streptococcus pyogenes to erythromycin and rokitamycin. Antimicrobial Agents and Chemotherapy, 47, 408–412.

    Article  CAS  Google Scholar 

  44. Nebe-von-Caron, G., Stephens, P. J., Hewitt, C. J., Powell, J. R., & Badley, R. A. (2000). Analysis of bacterial function by multi-colour fluorescence flow cytometry and single cell sorting. Journal of Microbiological Methods, 42, 97–114.

    Article  CAS  Google Scholar 

  45. Vaerman, J. L., Saussoy, P., & Ingargiola, I. (2004). Evaluation of real-time PCR data. Journal of Biological Regulators and Homeostatic Agents, 18, 212–214.

    CAS  Google Scholar 

  46. Anonymous. (2006). TOPO TA Cloning ® kit for sequencing—five-minute cloning of Taq polymerase-amplified PCR products for sequencing. Carlsbad: Invitrogen Corporation.

  47. Siguret, V., Ribba, A. S., Cherel, G., Meyer, D., & Pietu, G. (1994). Effect of plasmid size on transformation efficiency by electroporation of Escherichia coli DH5 alpha. Biotechniques, 16, 422–426.

    CAS  Google Scholar 

  48. Szostkova, M., & Horakova, D. (1998). The effect of plasmid DNA sizes and other factors on electrotransformation of Escherichia coli JM109. Bioelectrochemistry and Bioenergetics, 47, 319–323.

    Article  CAS  Google Scholar 

  49. Beld, M. G. H. M., Birch, C., Cane, P. A., Carman, W., Claas, E. C. J., Clewley, J. P., et al. (2007). Experts’ roundtable: Real-time PCR and microbiology. In I. M. Mackay (Ed.), Real-time PCR in microbiology from diagnosis to characterization (pp. 357–443). Norwich: Caister Academic Press.

    Google Scholar 

  50. Dhanasekaran, S., Doherty, T. M., Kenneth, J., & TB Trials Study Group. (2010). Comparison of different standards for real-time PCR-based absolute quantification. Journal of Immunological Methods, 354, 34–39.

    Article  CAS  Google Scholar 

  51. Loewen, P. C., & Switala, J. (1995). Template secondary structure can increase the error frequency of the DNA polymerase from Thermus aquaticus. Gene, 164, 59–63.

    Article  CAS  Google Scholar 

  52. Krishnapillai, V. (1995). Comparative genome architecture and dynamics in bacteria. Journal of Genetics, 74, 61–76.

    Article  CAS  Google Scholar 

  53. Tan, Z. J., & Chen, S. J. (2006). Nucleic acid helix stability: Effects of salt concentration, cation valence and size, and chain length. Biophysical Journal, 90, 1175–1190.

    Article  CAS  Google Scholar 

  54. Pfaffl, M. W. (2004). Quantification strategies in real-time PCR. In S. A. Bustin (Ed.), PCR A–Z of quantitative (pp. 87–112). La Jolla, CA: International University Line.

    Google Scholar 

  55. Hodek, J., Ovesna, J., & Kucera, L. (2009). Interferences of PCR effectivity: Importance for quantitative analyses. Czech Journal of Food Sciences, 27, 42–49.

    CAS  Google Scholar 

  56. Wilson, I. G. (1997). Inhibition and facilitation of nucleic acid amplification. Applied and Environmental Microbiology, 63, 3741–3751.

    CAS  Google Scholar 

  57. Schaudien, D., Baumgartner, W., & Herden, C. (2007). High preservation of DNA standards diluted in 50% glycerol. Diagnostic Molecular Pathology, 16, 153–157.

    Article  CAS  Google Scholar 

  58. Wiedbrauk, D., Werner, J., & Drevon, A. (1995). Inhibition of PCR by aqueous and vitreous fluids. Journal of Clinical Microbiology, 33, 2643–2646.

    CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Department of Agriculture, Fisheries and Food under Food Institutional Research Measure (FIRM), NDP 2000-2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin G. Wilkinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinon, A., Cronin, U.P. & Wilkinson, M.G. Development of Defined Microbial Population Standards Using Fluorescence Activated Cell Sorting for the Absolute Quantification of S. aureus Using Real-Time PCR. Mol Biotechnol 50, 62–71 (2012). https://doi.org/10.1007/s12033-011-9417-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-011-9417-3

Keywords

Navigation