Skip to main content
Log in

Identification of Aluminum-Regulated Genes by cDNA-AFLP Analysis of Roots in Two Contrasting Genotypes of Highbush Blueberry (Vaccinium corymbosum L.)

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

To investigate the molecular mechanisms of Al3+-stress in blueberry, a cDNA-amplified fragment length polymorphism (cDNA-AFLP) analysis was employed to identify Al-regulated genes in roots of contrasting genotypes of highbush blueberry (Brigitta, Al3+-resistant and Bluegold, Al3+-sensitive). Plants grown in hydroponic culture were treated with 0 and 100 μM Al3+ and collected at different times over 48 h. Seventy transcript-derived fragments (TDFs) were identified as being Al3+ responsive, 31 of which showed significant homology to genes with known or putative functions. Twelve TDFs were homologous to uncharacterized genes and 27 did not have significant matches. The expression pattern of several of the genes with known functions in other species was confirmed by quantitative relative real-time RT-PCR. Twelve genes of known or putative function were related to cellular metabolism, nine associated to stress responses and other transcription and transport facilitation processes. Genes involved in signal transduction, photosynthetic and energy processes were also identified, suggesting that a multitude of processes are implicated in the Al3+-stress response as reported previously for other species. The Al3+-stress response genes identified in this study could be involved in Al3+-resistance in woody plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

cDNA-AFLP:

DNA complementary to RNA-amplified fragment length polymorphism

TDF:

Transcript derived fragment

Aluminum:

Al3+

References

  1. Piljac-Žegarac, J., Belščak, A., & Piljac, A. (2009). Antioxidant capacity and polyphenolic content of blueberry (Vaccinium corymbosum L.) leaf infusions. Journal of Medicinal Food, 12, 608–614.

    Article  Google Scholar 

  2. Vega-Gálvez, A., Lemus-Mondaca, R., Tello-Ireland, C., Miranda, M., & Yagnam, F. (2009). Kinetic study of convective drying of blueberry variety O’Niel (Vaccinium corymbosum L.). Chilean Journal of Agricultural Research, 69, 171–178.

    Article  Google Scholar 

  3. Kochian, L. V., Piñeros, M. A., & Hoekenga, O. A. (2005). The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant and Soil, 274, 175–195.

    Article  CAS  Google Scholar 

  4. Mora, M. L., Rosas, A., Ribera, A., & Rengel, Z. (2009). Differential tolerance to Mn toxicity in perennial ryegrass genotypes: involvement of antioxidative enzymes and root exudation of carboxylates. Plant and Soil, 320, 79–89.

    Article  CAS  Google Scholar 

  5. Inostroza-Blancheteau, C., Soto, B., Ibáñez, C., Ulloa, P., Aquea, F., Arce-Johnson, P., et al. (2010). Mapping of aluminum tolerance loci in cereals: Tool available for crop breeding. Electronic Journal of Biotechnology, 13, 4.

    Article  Google Scholar 

  6. Ryan, P. R., Delhaize, E., & Randall, P. J. (1995). Characterization of Al-stimulated efflux of malate from apices of Al-tolerant wheat roots. Planta, 196, 103–110.

    Article  CAS  Google Scholar 

  7. Liu, J., Magalhaes, J. V., Shaff, J., & Kochian, L. V. (2009). Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant Journal, 57, 389–399.

    Article  CAS  Google Scholar 

  8. Jones, D. L., & Ryan, P. R. (2004). Nutrition/Aluminum toxicity. In D. Murphy, B. Murray, & B. Thomas (Eds.), Encyclopedia of Applied Plant Science (pp. 656–664). London: Academic Press.

  9. Tamás, L., Huttová, J., Mistrík, I., Simonovicová, M., & Siroka, B. (2003). Aluminium-induced drought and oxidative stress in barley roots. Journal of Plant Physiology, 163, 781–784.

    Article  Google Scholar 

  10. Yamamoto, Y., Kobayashi, Y., Devi, S. R., Rikiishi, S., & Matsumoto, H. (2002). Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cell. Plant Physiology, 128, 63–72.

    Article  CAS  Google Scholar 

  11. Pan, J. W., Zhu, M. Y., & Chen, H. (2001). Aluminum-induced cell death in root-tips cells of barley. Environmental and Experimental Botany, 46, 71–79.

    Article  CAS  Google Scholar 

  12. Rodriguez-Milla, M. A., Maurer, A., Rodriguez-Huete, A., & Gustafson, J. P. (2003). Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. Plant Journal, 36, 602–615.

    Article  CAS  Google Scholar 

  13. Ezaki, B., Sasaki, K., Matsumoto, H., & Nakashima, S. (2005). Functions of two genes in aluminium (Al) stress resistance: repression of oxidative damage by the AtBCB gene and promotion of efflux of Al ions by the NtGDI1 gene. Journal of Experimental Botany, 56, 2661–2671.

    Article  CAS  Google Scholar 

  14. Piñeros, M. A., Shaff, J. E., Manslank, H. S., Alves, V. M. C., & Kochian, L. V. (2005). Aluminum resistance in maize cannot be solely explained by root organic acid exudation comparative physiological study. Plant Physiology, 137, 231–241.

    Article  Google Scholar 

  15. Delhaize, E., Ryan, P. R., & Randall, P. J. (1993). Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiology, 103, 695–702.

    CAS  Google Scholar 

  16. Snowden, K. C., & Gardner, R. C. (1993). Five genes induced by aluminum in wheat (Triticum aestivum L.) roots. Plant Physiology, 103, 855–861.

    Article  CAS  Google Scholar 

  17. Mao, C., Yi, K., Yang, L., Zheng, B., Wu, Y., Liu, F., et al. (2004). Identification of aluminium-regulated genes by cDNA-AFLP in rice (Oryza sativa L.): aluminium-regulated genes for the metabolism of cell wall components. Journal of Experimental Botany, 55, 137–143.

    Article  CAS  Google Scholar 

  18. Watt, D. A. (2003). Aluminum-responsive genes in sugarcane: identification and analysis of expression under oxidative stress. Journal of Experimental Botany, 54, 1163–1174.

    Article  CAS  Google Scholar 

  19. Kumari, M., Taylor, G. J., & Deyholos, M. K. (2008). Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana. Molecular Genetics and Genomics, 279, 339–357.

    Article  CAS  Google Scholar 

  20. Snowden, K. C., Richards, K. D., & Gardner, R. C. (1995). Aluminium induced genes induction by toxic metals, low calcium, and wounding and pattern of expression in root tips. Plant Physiology, 107, 341–348.

    CAS  Google Scholar 

  21. Hamel, F., Breton, C., & Houde, M. (1998). Isolation and characterization of wheat aluminium-regulated genes: possible involvement of aluminium as a pathogenesis response elicitor. Planta, 205, 531–538.

    Article  CAS  Google Scholar 

  22. Yang, W. Q., Goulart, B. L., & Demchak, K. (1996). The effect of aluminum media on the growth of mycorrhizal and non mycorrhizal highbush blueberry plantlets. Plant and Soil, 183, 301–308.

    Article  CAS  Google Scholar 

  23. Reyes-Díaz, M., Alberdi, M., & Mora, M. L. (2009). Short-term aluminum stress differentially affects the photochemical efficiency of photosystem II in highbush blueberry genotypes. J Amican Society for Horticultural Science, 1, 14–21.

    Google Scholar 

  24. Bachem, C. W., van der Hoeven, R. S., de Bruijin, S. M., Vreugdenhil, D., Zabeau, M., & Visser, R. G. (1996). Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J, 9, 745–753.

    Article  CAS  Google Scholar 

  25. Hoagland, D. R., & Arnon, D. I. (1959). The water culture method for growing plants without soil. California Agricultural Experimental Station, 347, 1–32.

    Google Scholar 

  26. Gambiano, G., Perrone, I., & Gribaudo, I. (2008). A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochemical Analysis, 19, 520–525.

    Article  Google Scholar 

  27. Aquea, F., & Arce-Johnson, P. (2008). Identification of genes expressed during early somatic embryogenesis in Pinus radiata. Plant Physiology and Biochemistry, 46, 559–568.

    Article  CAS  Google Scholar 

  28. Naik, D., Dhanaraj, A. L., Arora, R., & Rowland, L. J. (2007). Identification of genes associated with cold acclimation in blueberry (Vaccinium corymbosum L.) using a subtractive hybridization approach. Plant Science, 173, 213–222.

    Article  CAS  Google Scholar 

  29. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25, 402–408.

    Article  CAS  Google Scholar 

  30. Doncheva, S., Amenós, M., Poschenrieder, C., & Barcelo, J. (2005). Root cell patterning: a primary target for aluminium toxicity in maize. Journal of Experimental Botany, 56, 1213–1220.

    Article  CAS  Google Scholar 

  31. Scheres, B., Benfey, P., & Dolan, L. (2002). Root development. In C. R. Somerville & E. M. Meyerowitz (Eds.), The Arabidopsis Book. Rockville: American Society of Plant Biologists.

    Google Scholar 

  32. Wolters, H., & Jürgens, G. (2009). Survival of the flexible: hormonal growth control and adaptation in plant development. Natural Reviews Genetics, 10, 305–317.

    Article  CAS  Google Scholar 

  33. Massot, N., Nicander, B., Barcelo, J., Poschenrieder, C., & Tillberg, E. (2002). A rapid increase in cytokinin levels and enhanced ethylene evolution precede Al3+-induced inhibition of root growth in bean seedlings (Phaseolus vulgaris L). Plant Growth Regulation, 37, 105–112.

    Article  CAS  Google Scholar 

  34. Sun, P., Tian, Q. Y., Chen, J., & Zhang, W. H. (2010). Aluminium-induced inhibition of root elongation in Arabidopsis is mediated by ethylene and auxin. Journal of Experimental Botany, 61, 347–356.

    Article  CAS  Google Scholar 

  35. Christians, M. J., Gingerich, D. J., Hansen, M., Binder, B. M., Kieber, J. J., & Vierstra, R. D. (2009). The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling type-2 ACC synthase levels. Plant Journal, 57, 332–345.

    Article  CAS  Google Scholar 

  36. Gray, W. M., Hellmann, H., Dharmasiri, S., & Estelle, M. (2002). Role of the Arabidopsis RING-H2 protein RBX1 in RUB modification and SCF function. Plant Cell, 14, 2137–2144.

    Article  CAS  Google Scholar 

  37. Rengel, Z., & Zhang, W. H. (2003). Role of dynamics of intracellular calcium in aluminium-toxicity syndrome. New Phytologist, 159, 295–314.

    Article  CAS  Google Scholar 

  38. Kurita, H., Nakatomi, A., Shimahara, H., Yazawa, M., & Ohki, S. (2005). Al3+ interaction sites of calmodulin and the Al3+ effect on target binding of calmodulin. Biochemical and Biophysical Research Communications, 333, 1060–1065.

    Article  CAS  Google Scholar 

  39. Wang, J. W., & Kao, C. H. (2006). Aluminum-inhibited root growth of rice seedlings is mediated through putrescine accumulation. Plant and Soil, 288, 373–381.

    Article  CAS  Google Scholar 

  40. Wen, X. P., Ban, Y., Inoue, H., Matsuda, N., & Moriguchi, T. (2009). Aluminum tolerance in a spermidine synthase-overexpressing transgenic European pear is correlated with the enhanced level of spermidine via alleviating oxidative status. Journal of Plant Physiology, 66, 471–478.

    CAS  Google Scholar 

  41. Chen, W., Xu, C., Zhao, B., Wang, X., & Wang, Y. (2008). Improved Al tolerance of saffron (Crocus sativus L.) by exogenous polyamines. Acta Physiologiae Plantarum, 30, 121–127.

    Article  CAS  Google Scholar 

  42. Park, S., Li, J., Pittman, J. K., Berkowitz, G. A., Yang, H., Undurraga, S., et al. (2005). Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. Proceedings of the National Academy of Sciences of the United States of America, 102, 18830–18835.

    Article  CAS  Google Scholar 

  43. Basu, A., Basu, U., & Taylor, G. J. (1994). Induction of microsomal membrane proteins in roots of an aluminum resistant cultivar of Triticum aestivum L under conditions of aluminum stress. Plant Physiology, 104, 1007–1013.

    CAS  Google Scholar 

  44. Hamilton, C. A., Good, A. G., & Taylor, G. J. (2001). Induction of vacuolar ATPase and mitochondrial ATP synthase by aluminum in an aluminum-resistant cultivar of wheat. Plant Physiology, 125, 2068–2077.

    Article  CAS  Google Scholar 

  45. Gebbie, L. K., Burn, J. E., Hocart, C. H., & Williamson, R. E. (2005). Genes encoding ADP-ribosylation factors in Arabidopsis thaliana L Heyn.; genome analysis and antisense suppression. Journal of Experimental Botany, 56, 1079–1091.

    Article  CAS  Google Scholar 

  46. Ezaki, B., Sivaguru, M., Ezaki, Y., Matsumoto, H., & Gardner, R. C. (1999). Acquisition of aluminum tolerance in Saccharomyces cerevisiae by expression of the BCB or NtGDI1 gene derived from plants. FEMS Microbiology Letters, 171, 81–87.

    Article  CAS  Google Scholar 

  47. Frith, M. C., Pheasant, M., & Mattick, J. S. (2005). The amazing complexity of the human transcriptome. European Journal of Human Genetics, 13, 894–897.

    Article  CAS  Google Scholar 

  48. Carninci, P., Kasukawa, T., Katayama, S., Gough, J., Frith, M. C., Maeda, N., et al. (2005). FANTOM Consortium, RIKEN Genome Exploration Research Group and Genome Science Group (Genome Network Project Core Group), The transcriptional landscape of the mammalian genome. Science, 309, 1559–1563.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Fruit Consortium, 07Genoma01, the Millennium Nucleus for Plant Functional Genomics (P06-009-F), Fondecyt Project No. 11080231 and Fondecyt Project No. 1080372. C. Inostroza-Blancheteau was supported by a PhD fellowship from CONICYT-Chile and UFRO. F. Aquea is supported by a Postdoctoral Project “Programa Bicentenario de Ciencia y Tecnología/CONICYT-Banco Mundial” PSD74-2006. We thank Michael Handford for assistance in language support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricio Arce-Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inostroza-Blancheteau, C., Aquea, F., Reyes-Díaz, M. et al. Identification of Aluminum-Regulated Genes by cDNA-AFLP Analysis of Roots in Two Contrasting Genotypes of Highbush Blueberry (Vaccinium corymbosum L.). Mol Biotechnol 49, 32–41 (2011). https://doi.org/10.1007/s12033-010-9373-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9373-3

Keywords

Navigation