Skip to main content
Log in

Root transcriptome sequencing and differentially expressed drought-responsive genes in the Platycladus orientalis (L.)

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Platycladus orientalis (L.) is used extensively for afforestation and is a common medicinal ingredient. Because of its drought tolerance, P. orientalis is widely used for afforestation in arid and semi-arid areas. To better understand the mechanisms involved in drought-stress tolerance in this important tree, the transcriptome profiles of drought-treated P. orientalis seedlings were analyzed using Illumina technology, and differentially expressed genes (DEGs) between drought-treated and well-watered trees were identified. We performed transcriptome sequencing of P. orientalis roots using the Illumina 4000 paired-end sequencing technique. More than 53 million 151-bp paired-end clean reads were obtained from each of the cDNA libraries and biological replicates, and de novo assembly generated 148,392 unigenes with an average length of 927.77 bp. After removing contaminating sequences, we found that 29.9 % (34,845) of the unigenes exhibited significant similarity to known sequences in the GenBank non-redundant protein database. A total of 3930 unigenes were found to be significantly differentially expressed between drought-treated and well-watered trees. Among them, 881 (22.42 %) were up-regulated and 3049 (77.58 %) were down-regulated in roots. Several DEGs had known functions in categories related to the biosynthesis of secondary metabolites, phenylalanine metabolism, starch and sucrose metabolism, and arginine and proline metabolism. A total of 194 genes that were found to be differentially regulated in response to drought stress were categorized as transcription factors. The transcriptome profiles obtained provide a valuable resource for future research to understand the molecular adaptation of Cupressaceae plants under drought condition and facilitate the exploration of drought-tolerant candidate genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed NU, Park JI, Jung HJ, Kang KK, Hur Y, Lim YP, Nou IS (2012) Molecular characterization of stress resistance-related chitinase genes of Brassica rapa. Plant Physiol Biochem 58:106–115

    Article  CAS  PubMed  Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot-London 97:883–893

    Article  CAS  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajaj S, Targolli J, Liu LF, Ho THD, Wu R (1999) Transgenic approaches to increase dehydration-stress tolerance in plants. Mol Breed 5:493–503

    Article  CAS  Google Scholar 

  • Bengough AG, McKenzie BM, Hallett PD, Valentine TA (2011) Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. J Exp Bot 62:59–68

    Article  CAS  PubMed  Google Scholar 

  • Biswal B, Joshi PN, Raval MK, Biswal UC (2011) Photosynthesis, a global sensor of environmental stress in green plants: stress signalling and adaptation. Curr Sci India 101:47–56

    CAS  Google Scholar 

  • Broun P (2004) Transcription factors as tools for metabolic engineering in plants. Curr Opin Plant Biol 7:202–209

    Article  CAS  PubMed  Google Scholar 

  • Chang E, Shi S, Liu J, Cheng T, Xue L, Yang X, Yang W, Lan Q, Jiang Z (2012) Selection of reference genes for quantitative gene expression studies in Platycladus orientalis (Cupressaceae) using real-time PCR. PLoS One 7(3), e33278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Rocha IMA, Vitorello VA, Silva JS, Ferreira-Silva SL, Viégas RA, Silva EN, Silveira JAG (2012) Exogenous ornithine is an effective precursor and the δ-ornithine amino transferase pathway contributes to proline accumulation under high N recycling in salt-stressed cashew leaves. J Plant Physiol 169:41–49

    Article  PubMed  Google Scholar 

  • De Coninck BMA, Sels J, Venmans E et al (2010) Arabidopsis thaliana plant defensin AtPDF1. 1 is involved in the plant response to biotic stress. New Phytol 187:1075–1088

    Article  PubMed  Google Scholar 

  • Dietz KJ, Vogel MO, Viehhauser A (2010) AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling. Protoplasma 245:3–14

    Article  CAS  PubMed  Google Scholar 

  • Do HM, Lee SC, Jung HW, Sohn KH, Hwang BK (2004) Differential expression and in situ localization of a pepper defensin (CADEF1) gene in response to pathogen infection, abiotic elicitors and environmental stresses in Capsicum annuum. Plant Sci 166:1297–1305

    Article  CAS  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hochholdinger F, Tuberosa R (2009) Genetic and genomic dissection of maize root development and architecture. Curr Opin Plant Biol 12:172–177

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A 103:12987–12992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang FC, Schwab W (2010) Cloning and characterization of a 9-lipoxygenase gene induced by pathogen attack from Nicotiana benthamiana for biotechnological application. BMC Biotechnol 11:30

    Article  Google Scholar 

  • Huang HH, Xu LL, Tong ZK, Lin EP, Liu QP, Cheng LJ, Zhu MY (2012) De novo characterization of the Chinese fir (Cunninghamia lanceolata) transcriptome and analysis of candidate genes involved in cellulose and lignin biosynthesis. BMC Genomics 13:648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang AL, Xu ZS, Zhao GY, Cui XY, Chen M, Li LC, Ma YZ (2014) Genome-wide analysis of the C3H zinc finger transcription factor family and drought responses of members in Aegilops tauschii. Plant Mol Biol Report 32:1241–1256

    Article  CAS  Google Scholar 

  • Kim DY, Jin JY, Alejandro S, Martinoia E, Lee Y (2010) Overexpression of AtABCG36 improves drought and salt stress resistance in Arabidopsis. Physiol Plant 139:170–180

    Article  CAS  PubMed  Google Scholar 

  • Kizis D, Lumbreras V, Pagès M (2001) Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Lett 498:187–189

    Article  CAS  PubMed  Google Scholar 

  • Koike M, Okamoto T, Tsuda S, Imai R (2002) A novel plant defensin-like gene of winter wheat is specifically induced during cold acclimation. Biochem Biophys Res Commun 298:46–53

    Article  CAS  PubMed  Google Scholar 

  • Kolosova N, Breuil C, Bohlmann J (2014) Cloning and characterization of chitinases from interior spruce and lodgepole pine. Phytochemistry 101:32–39

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KH, Piao HL, Kim HY et al (2006) Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell 126:1109–1120

    Article  CAS  PubMed  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Yang X, Wu HX (2013) Transcriptome profiling of radiata pine branches reveals new insights into reaction wood formation with implications in plant gravitropism. BMC Genomics 14:768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libertini E, Li Y, Mcqueen-Mason SJ (2004) Phylogenetic analysis of the plant endo-β-1,4-glucanase gene family. J Mol Evol 58:506–515

    Article  CAS  PubMed  Google Scholar 

  • Lim CW, Han SW, Hwang IS, Kim DS, Hwang BK, Lee SC (2015) The pepper lipoxygenase CaLOX1 plays a role in osmotic, drought and high salinity stress reponse. Plant Cell Physiol 56:930–942

    Article  PubMed  Google Scholar 

  • Liu Q, Zhou Z, Wei Y, Shen D, Feng Z, Hong S (2015) Genome-wide identification of differentially expressed genes associated with the high yielding of oleoresin in secondary xylem of Masson Pine (Pinus massoniana Lamb) by transcriptomic analysis. PLoS One 10(4), e0132624

    Article  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Long Y, Zhang J, Tian X, Wu S, Zhang Q, Zhang J, Dang Z, Pei XW (2014) De novo assembly of the desert tree Haloxylon ammodendron (C. A. Mey.) based on RNA-Seq data provides insight into drought response, gene discovery and marker identification. BMC Genomics 15:1111

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorenz WW, Alba R, Yu YS, Bordeaux JM, Simões M, Dean JFD (2011) Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.). BMC Genomics 12:264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Kim H, Zhong S, Chen H, Hu Z, Zhou B (2014) De novo transcriptome assembly for rudimentary leaves in Litchi chinesis Sonn. and identification of differentially expressed genes in response to reactive oxygen species. BMC Genomics 15:805

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo X, Bai X, Zhu D, Li Y, Ji W, Cai H, Wu J, Liu B, Zhu Y (2012) GsZFP1, a new Cys2/His2-type zinc-finger protein, is a positive regulator of plant tolerance to cold and drought stress. Planta 235:1141–1155

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Wang P, Zhou S, Sun Y, Liu N, Li X, Hou Y (2015) De novo transcriptome sequencing and comprehensive analysis of the drought-responsive genes in the desert plant Cynanchum komarovii. BMC Genomics 16:753

    Article  PubMed  PubMed Central  Google Scholar 

  • Manavalan LP, Guttikonda SK, Tran LSP, Nguyen HT (2009) Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol 50:1260–1276

    Article  CAS  PubMed  Google Scholar 

  • Mishima K, Fujiwara T, Iki T, Kuroda K, Yamashita K, Tamura M, Fujisawa Y, Watanabe A (2014) Transcriptome sequencing and profiling of expressed genes in cambial zone and differentiating xylem of Japanese cedar (Cryptomeria japonica). BMC Genomics 15:219

    Article  PubMed  PubMed Central  Google Scholar 

  • Molina C, Rotter B, Horres R et al (2008) SuperSAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genomics 9:553

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagy NE, Fossdal CG, Dalen LS, Lonneborg A, Heldal I, Johnsen O (2004) Effects of Rhizoctonia infection and drought on peroxidase and chitinase activity in Norway spruce (Picea abies). Physiol Plant 120:465–473

    Article  CAS  PubMed  Google Scholar 

  • Navari-Izzo F, Meneguzzo S, Loggini B, Vazzana C, Sgherri CLM (1997) The role of the glutathione system during dehydration of Boea hygroscopica. Physiol Plant 99:23–30

    Article  CAS  Google Scholar 

  • Nystedt B, Street NR, Wetterbom A et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584

    Article  CAS  PubMed  Google Scholar 

  • Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2013) Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. J Exp Bot 64:445–458

    Article  CAS  PubMed  Google Scholar 

  • Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2014) ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytol 202:35–49

    Article  PubMed  Google Scholar 

  • Ouyang SQ, Liu YF, Liu P, Lei G, He SJ, Ma B, Zhang WK, Zhang JS, Chen SY (2010) Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J 62:316–329

    Article  CAS  PubMed  Google Scholar 

  • Padmalatha KV, Dhandapani G, Kanakachari M et al (2012) Genome-wide transcriptomic analysis of cotton under drought stress reveal significant down-regulation of genes and pathways involved in fibre elongation and up-regulation of defense responsive genes. Plant Mol Biol 78:223–246

    Article  CAS  PubMed  Google Scholar 

  • Parchman TL, Geist KS, Grahnen JA, Benkman CW, Buerkle CA (2010) Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery. BMC Genomics 11:180

    Article  PubMed  PubMed Central  Google Scholar 

  • Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH (2001) Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2–type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13:1035–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasquali G, Biricolti S, Locatelli F, Baldoni E, Mattana M (2008) Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples. Plant Cell Rep 27:1677–1686

    Article  CAS  PubMed  Google Scholar 

  • Pathak MR, Teixeira da Silva JA, Wani SH (2014) Polyamines in response to abiotic stress tolerance through transgenic approaches. GM Crops Food 5:87–96

    Article  PubMed  Google Scholar 

  • Qi B, Yang Y, Yin Y, Xu M, Li H (2014) De novo sequencing, assembly, and analysis of the Taxodium ‘Zhongshansa’ roots and shoots transcriptome in response to short-term waterlogging. BMC Plant Biol 14:201

    Article  PubMed  PubMed Central  Google Scholar 

  • Rabello AR, Guimarães CM, Rangel PHN et al (2008) Identification of drought-responsive genes in roots of upland rice (Oryza sativa L). BMC Genomics 9:485

    Article  PubMed  PubMed Central  Google Scholar 

  • Ranjan A, Pandey N, Lakhwani D, Dubey NK, Pathre UV, Sawant SV (2012) Comparative transcriptomic analysis of roots of contrasting Gossypium herbaceum genotypes revealing adaptation to drought. BMC Genomics 13:680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren X, Chen Z, Liu Y, Zhang H, Zhang M, Liu Q, Hong X, Zhu JK, Gong Z (2010) ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J 63:417–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646

    CAS  PubMed  Google Scholar 

  • Sánchez-Fernández R, Fricker M, Corben LB, White NS, Sheard N, Leaver CJ, Montagu MV, Inzé D, May MJ (1997) Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control. Proc Natl Acad Sci U S A 94:2745–2750

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato Y, Yokoya S (2008) Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17. 7. Plant Cell Rep 27:329–334

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Yoshida M, Hiraide H, Ihara K, Yamamoto H (2014) Transcriptome analysis of reaction wood in gymnosperms by next-generation sequencing. Am J Plant Sci 5:2785–2798

    Article  Google Scholar 

  • Schachtman DP, Goodger JQD (2008) Chemical root to shoot signaling under drought. Trends Plant Sci 13:281–287

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Narusaka M, Ishida J et al (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  CAS  PubMed  Google Scholar 

  • Seo JS, Joo J, Kim MJ, Kim YK, Nahm BH, Song SI, Cheong JJ, Lee JS, Kim JK, Choi YD (2011) OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J 65:907–921

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  CAS  PubMed  Google Scholar 

  • Siedow JN (2003) Plant lipoxygenase: structure and function. Annu Rev Plant Biol 42:145–188

    Article  Google Scholar 

  • Sofo A, Dichio B, Xiloyannis C, Masia A (2004) Lipoxygenase activity and proline accumulation in leaves and roots of olive trees in response to drought stress. Physiol Plant 121:58–65

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Newton RJ, Lin J, Charles TM (2006) Expression of a transcription factor from Capsicum annuum in pine calli counteracts the inhibitory effects of salt stress on adventitious shoot formation. Mol Genet Genomics 276:242–253

    Article  CAS  PubMed  Google Scholar 

  • Tsanakas GF, Manioudaki ME, Economou AS, Kalaitzis P (2014) De novo transcriptome analysis of petal senescence in Gardenia jasminoides Ellis. BMC Genomics 15:554

    Article  PubMed  PubMed Central  Google Scholar 

  • Veljovic-Jovanovic S, Kukavica B, Stevanovic B, Navari-Izzo F (2006) Senescence-and drought-related changes in peroxidase and superoxide dismutase isoforms in leaves of Ramonda serbica. J Exp Bot 57:1759–1768

    Article  CAS  PubMed  Google Scholar 

  • Winter G, Todd CD, Trovato M, Forlani G, Funck D (2015) Physiological implications of arginine metabolism in plants. Front Plant Sci 6:534

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Wei W, Pang X, Wang X, Zhang H, Dong B, Xing Y, Li X, Wang M (2014) Comparative transcriptome profiling of a desert evergreen shrub, Ammopiptanthus mongolicus, in response to drought and cold stresses. BMC Genomics 15:671

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie ZM, Zou HF, Lei G et al (2009) Soybean trihelix transcription factors GmGT-2A and GmGT-2B improve plant tolerance to abiotic stresses in transgenic Arabidopsis. PLoS One 4(9), e6898

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei L (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39:W316–W322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing HT, Guo P, Xia XL, Yin WL (2011) PdERECTA, a leucine-rich repeat receptor-like kinase of poplar, confers enhanced water use efficiency in Arabidopsis. Planta 234:229–241

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Wang RG, Mao G, Koczan JM (2006) Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol 142:1065–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong H, Li J, Liu P, Duan J, ZhaoY GX, Li Y, Zhang H, Ali J, Li Z (2014) Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS One 9(3), e92913

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang A, Dai X, Zhang WH (2012) A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot:err431

  • Zhang JY, Broeckling CD, Sumner LW, Wang ZY (2007) Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance. Plant Mol Biol 64:265–278

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Chen M, Li L, Xu Z, Chen X, Guo J, Ma Y (2009) Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot:erp214

  • Zhang S, Zhang L, Chai Y, Wang F, Li Y, Li S, Zhao Z (2015) Physiology and proteomics research on the leaves of ancient Platycladus orientalis (L.) during winter. J Proteomics 126:263–278

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Wang X, Jiao Y et al (2007) Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol 63:591–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Zhang C, Lin J, Yang Y, Peng Y, Tang D, Zhao X, Zhu Y, Liu X (2015) Over-expression of a glutamate dehydrogenase gene, MgGDH, from Magnaporthe grisea confers tolerance to dehydration stress in transgenic rice. Planta 241:727–740

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Forestry Industry Research Special Funds for Public Welfare Projects (China) (201404302).

Authors’ contributions

ZZ developed and supervised the work. The preparation of plant material, library construction, gene-expression analyses and data analysis were conducted by SZ and LLZ. YML, KKZ, LS, and QYZ helped the sample collection and quantitative reverse transcription PCR experiment. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Zhao.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Communicated by C. Chen

Data archiving statement

All of the raw data from the Illumina sequencing have been deposited in NCBI Sequence Read Archive (SRA) under accession number (SRX1717972, SRX1717973, SRX1717974, SRX1717969, SRX1717970 and SRX1717971).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Additional file 1

Summary of sequences analysis and length distribution of assembled unigenes PO1_1, PO1_1 and PO1_3: Well-watered sample (three independent biological replicates) PO3_1, PO3_2 and PO3_3: Drought-treated sample (three independent biological replicates) Q20: The percentage of base with a phred value > 20 Q30: The percentage of base with a phred value > 30 (DOC 51 kb)

Additional file 2

Summary of Gene Ontology (GO) classification of assembled unigenes (XLS 3491 kb)

Additional table 2

Statistics of annotation results of unigene sequences (DOC 36 kb)

Additional file 3

Eukaryotic Orthologous Groups (KOG) annotation of putative proteins (XLS 16 kb)

Additional file 4

Pathway assignment based on Kyoto Encyclopedia of Gene and Genomes (KEGG) (XLS 31 kb)

Additional file 5

Summary of Simple Sequence Repeats (SSRs) detected from transcriptome data (DOC 54 kb)

Additional file 6

Gene Ontology (GO) analyses of the differentially expressed genes (DEGs) (XLS 188 kb)

Additional file 7

Differentially expressed genes (DEGs) subjected to Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway analysis (XLS 110 kb)

Additional file 8

List of Gene Ontology (GO) enrichment analysis (XLS 229 kb)

Additional file 9

Transcription factors associated with drought response (XLS 303 kb)

Additional file 10

Transcription factors differentially expressed in drought stress (up- or down-regulated) (XLS 26 kb)

Additional file 11

Changes in gene expression levels confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) (DOC 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zhang, L., Zhao, Z. et al. Root transcriptome sequencing and differentially expressed drought-responsive genes in the Platycladus orientalis (L.). Tree Genetics & Genomes 12, 79 (2016). https://doi.org/10.1007/s11295-016-1042-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-016-1042-7

Keywords

Navigation