Skip to main content

Advertisement

Log in

Enhanced CHO Cell-Based Transient Gene Expression with the Epi-CHO Expression System

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Transient gene expression systems in mammalian cells continue to grow in popularity due to their capacity to produce significant amounts of recombinant protein in a rapid and scalable manner, without the lengthy time periods and resources required for stable cell line development. Traditionally, production of recombinant monoclonal antibodies for pre-clinical assessment by transient expression in CHO cells has been hampered by low titers. In this report, we demonstrate transient monoclonal antibody titers of 140 mg/l with CHO cells using the episomal-based transient expression system, Epi-CHO. Such titers were achieved by implementing an optimized transfection protocol incorporating mild-hypothermia and through screening of a variety of chemically defined and serum-free media for their ability to support elevated and prolonged viable cell densities post-transfection, and in turn, improve recombinant protein yields. Further evidence supporting Epi-CHO’s capacity to enhance transgene expression is provided, where we demonstrate higher transgene mRNA and protein levels of two monoclonal antibodies and a destabilized enhanced green fluorescent protein with Epi-CHO compared to cell lines deficient in plasmid DNA replication and/or retention post-transfection. The results demonstrate the Epi-CHO system’s capacity for the rapid production of CHO cell-derived recombinant monoclonal antibodies in serum-free conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mariati, Ho S. C. L., Yap, M. G. S., & Yang, Y. (2010). Evaluating post-transcriptional regulatory elements for enhancing transient gene expression levels in CHO K1 and HEK293 cells. Protein Expression and Purification, 69, 9–15.

    Article  CAS  Google Scholar 

  2. Pham, P. L., Perret, S., Cass, B., Carpentier, E., St-Laurent, G., Bisson, L., et al. (2005). Transient gene expression in HEK293 cells: Peptone addition posttransfection improves recombinant protein synthesis. Biotechnology and Bioengineering, 90, 332–344.

    Article  CAS  Google Scholar 

  3. Ye, J., Kober, V., Tellers, M., Naji, Z., Salmon, P., & Markusen, J. (2009). High-level protein expression in scalable CHO transient transfection. Biotechnology and Bioengineering, 103, 542–551.

    Article  CAS  Google Scholar 

  4. Backliwal, G., Hildinger, M., Kuettel, I., Delegrange, F., Hacker, D. L., & Wurm, F. M. (2008). Valproic acid: A viable alternative to sodium butyrate for enhancing protein expression in mammalian cell cultures. Biotechnology and Bioengineering, 101, 182–189.

    Article  CAS  Google Scholar 

  5. Tait, A. S., Brown, C. J., Galbraith, D. J., Hines, M. J., Hoare, M., Birch, J. R., et al. (2004). Transient production of recombinant proteins by Chinese hamster ovary cells using polyethyleneimine/DNA complexes in combination with microtubule disrupting anti-mitotic agents. Biotechnology and Bioengineering, 88, 707–721.

    Article  CAS  Google Scholar 

  6. Galbraith, D. J., Tait, A. S., Racher, A. J., Birch, J. R., & James, D. C. (2006). Control of culture environment for improved polyethylenimine-mediated transient production of recombinant monoclonal antibodies by CHO Cells. Biotechnology Progress, 22, 753–762.

    Article  CAS  Google Scholar 

  7. Wulhfard, S., Tissot, S., Bouchet, S., Cevey, J., de Jesus, M., Hacker, D. L., et al. (2008). Mild hypothermia improves transient gene expression yields several fold in Chinese hamster ovary cells. Biotechnology Progress, 24, 458–465.

    Article  CAS  Google Scholar 

  8. Wulhfard, S., Baldi, L., Hacker, DL., & Wurm, F. (2010). Valproic acid enhances recombinant mRNA and protein levels in transiently transfected Chinese hamster ovary cells. Journal of Biotechnology. doi: 10.1016/j.jbiotec.2010.05.003 (in press, uncorrected proof).

  9. Durocher, Y., Perret, S., & Kamen, A. (2002). High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Research. 30, e9.

    Google Scholar 

  10. Cachianes, G., Ho, C., Weber, R. F., Williams, S. R., Goeddel, D. V., & Leung, D. W. (1993). Epstein-Barr virus-derived vectors for transient and stable expression of recombinant proteins. Biotechniques, 15, 255–259.

    CAS  Google Scholar 

  11. Lindner, S. E., & Sugden, B. (2007). The plasmid replicon of Epstein-Barr virus: Mechanistic insights into efficient, licensed, extrachromosomal replication in human cells. Plasmid, 58, 1–12.

    Article  CAS  Google Scholar 

  12. Yates, J. L., Warren, N., & Sugden, B. (1985). Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature, 313, 812–815.

    Article  CAS  Google Scholar 

  13. Geisse, S. (2009). Reflections on more than 10 years of TGE approaches. Protein Expression and Purification, 64, 99–107.

    Article  CAS  Google Scholar 

  14. Backliwal, G., Hildinger, M., Chenuet, S., Wulhfard, S., De Jesus, M., & Wurm, FM. (2008). Rational vector design and multi-pathway modulation of HEK 293E cells yield recombinant antibody titers exceeding 1 g/l by transient transfection under serum-free conditions. Nucleic Acids Research 36, e96.

  15. Baldi, L., Hacker, D., Adam, M., & Wurm, F. (2007). Recombinant protein production by large-scale transient gene expression in mammalian cells: State of the art and future perspectives. Biotechnological Letters, 29, 677–684.

    Article  CAS  Google Scholar 

  16. Krysan, P. J., & Calos, M. P. (1993). Epstein-Barr virus-based vectors that replicate in rodent cells. Gene, 136, 137–143.

    Article  CAS  Google Scholar 

  17. Kishida, T., Asada, H., Kubo, K., Sato, Y. T., Shin-Ya, M., Imanishi, J., et al. (2008). Pleiotrophic functions of Epstein-Barr virus nuclear antigen-1 (EBNA-1) and oriP differentially contribute to the efficiency of transfection/expression of exogenous gene in mammalian cells. Journal of Biotechnology, 133, 173–178.

    Article  Google Scholar 

  18. Kunaparaju, R., Liao, M., & Sunstrom, N. A. (2005). Epi-CHO, an episomal expression system for recombinant protein production in CHO cells. Biotechnology and Bioengineering, 91, 670–677.

    Article  CAS  Google Scholar 

  19. Sleiman, R. J., Gray, P. P., McCall, M. N., Codamo, J., & Sunstrom, N. A. S. (2008). Accelerated cell line development using two-color fluorescence activated cell sorting to select highly expressing antibody-producing clones. Biotechnology and Bioengineering, 99, 578–587.

    Article  CAS  Google Scholar 

  20. Li, X., Zhao, X., Fang YJ, X., Duong, T., Fan, C., Huang, C. C., et al. (1998). Generation of destabilised green fluorescent protein as a transcription reporter. Journal of Biological Chemistry, 273, 34970–34975.

    Article  CAS  Google Scholar 

  21. Sun, X., Goh, P. E., Wong, K. T., Mori, T., & Yap, M. G. (2006). Enhancement of transient gene expression by fed-batch culture of HEK 293 EBNA1 cells in suspension. Biotechnological Letters, 28, 843–848.

    Article  CAS  Google Scholar 

  22. Shan, L., Wang, L., Yin, J., Zhong, P., & Zhong, J. (2006). An OriP/EBNA-1-based baculovirus vector with prolonged and enhanced transgene expression. Journal of Gene Medicine, 8, 1400–1406.

    Article  CAS  Google Scholar 

  23. Haldankar, R., Li, D., Saremi, Z., Baikalov, C., & Deshpande, R. (2006). Serum-free suspension large-scale transient transfection of CHO cells in WAVE bioreactors. Molecular Biotechnology, 34, 191–200.

    Article  CAS  Google Scholar 

  24. Elouahabi, A., & Ruysschaert, J.-M. (2005). Formation and intracellular trafficking of lipoplexes and polyplexes. Molecular Therapy, 11, 336–347.

    Article  CAS  Google Scholar 

  25. Mislick, K. A., & Baldeschwieler, J. D. (1996). Evidence for the role of proteoglycans in cation-mediated gene transfer. Proceedings of the National Academy of Sciences of the United States of America, 93, 12349–12354.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Karen Hughes for her critical feedback in the preparation of this manuscript, Kannan Kaliappan for technical assistance with media adaptation, the NCRIS Biologics Facility at the AIBN, and Robert Simpson from the Real-time PCR Facility at The University of Queensland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trent P. Munro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Codamo, J., Munro, T.P., Hughes, B.S. et al. Enhanced CHO Cell-Based Transient Gene Expression with the Epi-CHO Expression System. Mol Biotechnol 48, 109–115 (2011). https://doi.org/10.1007/s12033-010-9351-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9351-9

Keywords

Navigation