Skip to main content

Advertisement

Log in

Comparison of different transient gene expression systems for the production of a new humanized anti-HER2 monoclonal antibody (Hersintuzumab)

  • Research article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Background

Producing therapeutic proteins can be done quickly and on a large scale through Transient Gene Expression (TGE). Chinese hamster ovary (CHO) cell lines are commonly used to achieve this. Although there are few comparative studies, TGE has been observed in suspension-adapted CHO cells.

Objectives

We tested TGE’s effectiveness in DG-44, CHO-S, and ExpiCHO-S cell lines with four transfection reagents.

Methods

A design of experiments (DoE) was followed to optimize transfection using a recombinant monoclonal antibody (mAb) construct. To evaluate the efficacy, flow cytometry and ELISA were used. Feeding strategies and temperature shifts were implemented to enhance transfection effectiveness. The quality of the mAb was assessed through ELISA, SDS-PAGE, and proliferation inhibition assays.

Results

We adapted all cell lines to grow in suspension using a serum-free medium. Our findings from flow cytometry and ELISA tests indicate that PEI and Pmax reagents had a higher rate of transfection and mAb production than the ExpiCHO commercial transfection reagent. While DG-44 cells had better transfection efficiency than CHO-S and ExpiCHO-S, there was no significant difference between CHO-S and ExpiCHO-S. Our TGE system was more productive at 32 °C than at 37 °C. In the optimized TGE of Pmax-based transfection in DG-44 at 37 and 32 °C, the production level of mAb was more than half of the amount of the commercial ExpiCHO-S expression system. Still, the number of transfected cells was three times higher, making it more efficient. The purified mAb from all transfected cell lines had similar structural and functional properties under different conditions.

Conclusion

Our research shows that using Pmax and DG-44 cells in the TGE system is a cost-effective and efficient way to produce humanized monoclonal antibodies. We discovered that this method outperforms the ExpiCHO-S kit.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All raw data were uploaded as Supplementary files.

References

  1. Pham PL, Kamen A, Durocher Y. Large-scale transfection of mammalian cells for the fast production of recombinant protein. Mol Biotechnol. 2006;34(2):225–37. https://doi.org/10.1385/mb:34:2:225.

    Article  CAS  PubMed  Google Scholar 

  2. Geisse S. Reflections on more than 10 years of TGE approaches. Protein Exp Purif. 2008;64(2):99–107. https://doi.org/10.1016/j.pep.2008.10.017.

    Article  CAS  Google Scholar 

  3. Baldi L, Hacker DL, Adam M, Wurm FM. Recombinant protein production by large-scale transient gene expression in mammalian cells: state of the art and future perspectives. Biotechnol Lett. 2007;29(5):677–84. https://doi.org/10.1007/s10529-006-9297-y.

    Article  CAS  PubMed  Google Scholar 

  4. Zhu J. Update on production of recombinant therapeutic protein: transient gene expression. 1st ed. iSmithers Rapra Publishing; 2013.

  5. Bollin F, Dechavanne V, Chevalet L. Design of experiment in CHO and HEK transient transfection condition optimization. Protein Exp Purif. 2011;78(1):61–8.

    Article  CAS  Google Scholar 

  6. Ye J, Kober V, Tellers M, Naji Z, Salmon P, Markusen JF. High-level protein expression in scalable CHO transient transfection. Biotechnol Bioeng. 2009;103(3):542–51. https://doi.org/10.1002/bit.22265.

    Article  CAS  PubMed  Google Scholar 

  7. Rajendra Y, Hougland MD, Alam R, Morehead TA, Barnard GC. A high cell density transient transfection system for therapeutic protein expression based on a CHO GS-knockout cell line: process development and product quality assessment. Biotechnol Bioeng. 2015;112(5):977–86. https://doi.org/10.1002/bit.25514.

    Article  CAS  PubMed  Google Scholar 

  8. Gutiérrez-Granados S, Cervera L, Kamen AA, Gòdia F. Advancements in mammalian cell transient gene expression (TGE) technology for accelerated production of biologics. Crit Rev Biotechnol. 2018;38(6):918–40. https://doi.org/10.1080/07388551.2017.1419459.

    Article  CAS  PubMed  Google Scholar 

  9. Stuible M, Burlacu A, Perret S, Brochu D, Paul-Roc B, Baardsnes J, Loignon M, Grazzini E, Durocher Y. Optimization of a high-cell-density polyethylenimine transfection method for rapid protein production in CHO-EBNA1 cells. J Biotechnol. 2018;281:39–47. https://doi.org/10.1016/j.jbiotec.2018.06.307.

    Article  CAS  PubMed  Google Scholar 

  10. Derouazi M, Martinet D, Schmutz NB, Flaction R, Wicht M, Bertschinger M, Hacker D, Beckmann J, Wurm F. Genetic characterization of CHO production host DG44 and derivative recombinant cell lines. Biochem Biophys Res Commun. 2006;340(4):1069–77. https://doi.org/10.1016/j.bbrc.2005.12.111.

    Article  CAS  PubMed  Google Scholar 

  11. Barron N, Kumar N, Sanchez N, Doolan P, Clarke C, Meleady P, O’sullivan F, Clynes M. Engineering CHO cell growth and recombinant protein productivity by overexpression of miR-7. J Biotechnol. 2011;151(2):204–11. https://doi.org/10.1016/j.jbiotec.2010.12.005.

    Article  CAS  PubMed  Google Scholar 

  12. You M, Liu Y, Chen Y, Guo J, Wu J, Fu Y, Shen R, Qi R, Luo W, et al. Maximizing antibody production in suspension-cultured mammalian cells by the customized transient gene expression method. Biosci Biotechnol Biochem. 2013;77(6):1207–13. https://doi.org/10.1271/bbb.120968.

    Article  CAS  PubMed  Google Scholar 

  13. Longo PA, Kavran JM, Kim M-S, Leahy DJ. Transient mammalian cell transfection with polyethylenimine (PEI). Methods Enzymol. 2013;529:227–40. https://doi.org/10.1016/b978-0-12-418687-3.00018-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. González-Domínguez I, Grimaldi N, Cervera L, Ventosa N, Gòdia F. Impact of physicochemical properties of DNA/PEI complexes on transient transfection of mammalian cells. New Biotechnol. 2019;49:88–97. https://doi.org/10.1016/j.nbt.2018.09.005.

    Article  CAS  Google Scholar 

  15. Derouazi M, Girard P, Van Tilborgh F, Iglesias K, Muller N, Bertschinger M, Wurm FM. Serum-free large‐scale transient transfection of CHO cells. Biotechnol Bioeng. 2004;87(4):537–45. https://doi.org/10.1002/bit.20161.

    Article  CAS  PubMed  Google Scholar 

  16. Sellhorn G, Caldwell Z, Mineart C, Stamatatos L. Improving the expression of recombinant soluble HIV envelope glycoproteins using pseudo-stable transient transfection. Vaccine. 2009;28(2):430–6. https://doi.org/10.1016/j.vaccine.2009.10.028.

    Article  CAS  PubMed  Google Scholar 

  17. Delafosse L, Xu P, Durocher Y. Comparative study of polyethylenimines for transient gene expression in mammalian HEK293 and CHO cells. J Biotechnol. 2016;227:103–11. https://doi.org/10.1016/j.jbiotec.2016.04.028.

    Article  CAS  PubMed  Google Scholar 

  18. Nair RR, Rodgers JR, Schwarz LA. Enhancement of transgene expression by combining glucocorticoids and anti-mitotic agents during transient transfection using DNA-cationic liposomes. Mol Ther. 2002;5(4):455–62. https://doi.org/10.1006/mthe.2002.0567.

    Article  CAS  PubMed  Google Scholar 

  19. Legendre J-Y, Szoka FC Jr. Delivery of plasmid DNA into mammalian cell lines using pH-sensitive liposomes: comparison with cationic liposomes. Pharm Res. 1992;9(10):1235–42. https://doi.org/10.1023/a:1015836829670.

    Article  CAS  PubMed  Google Scholar 

  20. Zhong X, Ma W, Meade CL, Tam AS, Llewellyn E, Cornell R, Cote K, Scarcelli JJ, Marshall JK, et al. Transient CHO expression platform for robust antibody production and its enhanced N-glycan sialylation on therapeutic glycoproteins. Biotechnol Prog. 2019;35(1):e2724. https://doi.org/10.1002/btpr.2724.

    Article  CAS  PubMed  Google Scholar 

  21. Jain NK, Barkowski-Clark S, Altman R, Johnson K, Sun F, Zmuda J, Liu CY, Kita A, Schulz R, et al. A high density CHO-S transient transfection system: comparison of ExpiCHO and Expi293. Protein Expr Purif. 2017;134:38–46. https://doi.org/10.1016/j.pep.2017.03.018.

    Article  CAS  PubMed  Google Scholar 

  22. Liu CY, Spencer V, Kumar S, Liu J, Chiou H, Zmuda JF. Attaining high transient titers in CHO cells: case study involving the use of the ExpiCHO™ mammalian transient expression system. Genetic Eng Biotechnol News. 2015;35(17):34–5. https://doi.org/10.1089/gen.35.17.15.

    Article  Google Scholar 

  23. Cupo A, Cruz Portillo VM, Gelfand P, Yasmeen A, Klasse P, Moore JP. Optimizing the production and affinity purification of HIV-1 envelope glycoprotein SOSIP trimers from transiently transfected CHO cells. PLoS ONE. 2019;14(4):e0215106.DOI. https://doi.org/10.1371/journal.pone.0215106.

    Article  CAS  Google Scholar 

  24. Amiri MM, Golsaz-Shirazi F, Soltantoyeh T, Hosseini-Ghatar R, Bahadori T, Khoshnoodi J, Navabi SS, Farid S, Karimi-Jafari MH, et al. Hersintuzumab: a novel humanized anti-HER2 monoclonal antibody induces potent tumor growth inhibition. Investig New Drugs. 2018;36(2):171–86. https://doi.org/10.1007/s10637-017-0518-0.

    Article  CAS  Google Scholar 

  25. Tahmasebi F, Kazemi T, Amiri MM, Khoshnoodi J, Mahmoudian J, Bayat AA, Jeddi-Tehrani M, Rabbani H, Shokri F. Vitro assessment of the effects of anti-HER2 monoclonal antibodies on proliferation of HER2-overexpressing breast cancer cells. Immunotherapy. 2014;6(1):43–9. https://doi.org/10.2217/imt.13.156.

    Article  CAS  PubMed  Google Scholar 

  26. Kazemi T, Tahmasebi F, Bayat AA, Mohajer N, Khoshnoodi J, Jeddi-Tehrani M, Rabbani H, Shokri F. Characterization of novel murine monoclonal antibodies directed against the extracellular domain of human HER2 tyrosine kinase receptor. Hybridoma. 2011;30(4):347–53. https://doi.org/10.1089/hyb.2011.0023.

    Article  CAS  PubMed  Google Scholar 

  27. Brezinsky SCG, Chiang GG, Szilvasi A, Mohan S, Shapiro RI, MacLean A, Sisk W, Thill G. A simple method for enriching populations of transfected CHO cells for cells of higher specific productivity. J Immunol Methods. 2003;277(1):141–55. https://doi.org/10.1016/S0022-1759(03)00108-X.

    Article  CAS  PubMed  Google Scholar 

  28. Borth N, Zeyda M, Katinger H. Efficient selection of high-producing subclones during gene amplification of recombinant chinese hamster ovary cells by flow cytometry and cell sorting. Biotechnol Bioeng. 2000;71(4):266–73. https://doi.org/10.1002/1097-0290(2000)71:4<266::AID-BIT1016>3.0.CO;2-2.

  29. Geisse S, Henke M. Large-scale transient transfection of mammalian cells: a newly emerging attractive option for recombinant protein production. J Struct Funct Genomics. 2005;6(2):165–70. https://doi.org/10.1007/s10969-005-2826-4.

    Article  CAS  PubMed  Google Scholar 

  30. Wurm F, Bernard A. Large-scale transient expression in mammalian cells for recombinant protein production. Curr Opin Biotechnol. 1999;10(2):156–9. https://doi.org/10.1016/s0958-1669(99)80027-5.

    Article  CAS  PubMed  Google Scholar 

  31. You M, Yang Y, Zhong C, Chen F, Wang X, Jia T, Chen Y, Zhou B, Mi Q, et al. Efficient mAb production in CHO cells with optimized signal peptide, codon, and UTR. Appl Microbiol Biotechnol. 2018;102(14):5953–64. https://doi.org/10.1007/s00253-018-8986-5.

    Article  CAS  PubMed  Google Scholar 

  32. Sou SN, Lee K, Nayyar K, Polizzi KM, Sellick C, Kontoravdi C. Exploring cellular behavior under transient gene expression and its impact on mAb productivity and Fc-glycosylation. Biotechnol Bioeng. 2018;115(2):512–8. https://doi.org/10.1002/bit.26456.

    Article  CAS  PubMed  Google Scholar 

  33. Ye J, Alvin K, Latif H, Hsu A, Parikh V, Whitmer T, Tellers M, de la Edmonds MC, Ly J, et al. Rapid protein production using CHO stable transfection pools. Biotechnol Prog. 2010;26(5):1431–7. https://doi.org/10.1002/btpr.469.

    Article  CAS  PubMed  Google Scholar 

  34. Wright JL, Jordan M, Wurm FM. Extraction of plasmid DNA using reactor scale alkaline lysis and selective precipitation for scalable transient transfection. Cytotechnology. 2001;35(3):165–73. https://doi.org/10.1023/a:1013106032341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Steger K, Brady J, Wang W, Duskin M, Donato K, Peshwa M. CHO-S antibody titers > 1 gram/liter using flow electroporation-mediated transient gene expression followed by rapid migration to high-yield stable cell lines. J Biomol Screen. 2015;20(4):545–51. https://doi.org/10.1177/1087057114563494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reinhart D, Damjanovic L, Sommeregger W, Gili A, Schafellner S, Castan A, Kaisermayer C, Kunert R. Influence of cell culture media and feed supplements on cell metabolism and quality of IgG produced in CHO-K1, CHO-S, and CHO-DG44. BMC Proc. 2015; 9(9):36. https://doi.org/10.1186/1753-6561-9-S9-P36.

  37. Chiou HC, Vasu S, Liu CY, Cisneros I, Jones MB, Zmuda JF. Scalable transient protein expression. Methods Mol Biol. 2014;1104:35–55. https://doi.org/10.1007/978-1-62703-733-4_4.

    Article  CAS  PubMed  Google Scholar 

  38. Geisse S, Voedisch B. Transient expression technologies: past, present, and future. Methods Mol Biol. 2012;899:203–19. https://doi.org/10.1007/978-1-61779-921-1_13.

    Article  CAS  PubMed  Google Scholar 

  39. Wulhfard S, Tissot S, Bouchet S, Cevey J, De Jesus M, Hacker DL, Wurm FM. Mild hypothermia improves transient gene expression yields several fold in Chinese hamster ovary cells. Biotechnol Prog. 2008;24(2):458–65. https://doi.org/10.1021/bp070286c.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was partially supported by grants from National Institute for Medical Research Development of Iran (Grant No. 964157) and Tehran University of Medical Sciences (Grant No. 98-3-99-41359).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahmood Jeddi-Tehrani, Mohammad Mehdi Amiri or Fazel Shokri.

Ethics declarations

Ethics statement

The animal study was reviewed and approved by the ethics committee of the National Institute for Medical Research Development of Iran - NIMAD (IR NIMAD REC 1396 060).

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 225 KB)

ESM 2

(CSV 308 bytes)

ESM 3

(CSV 345 bytes)

ESM 4

(CSV 314 bytes)

ESM 5

(CSV 339 bytes)

ESM 6

(CSV 360 bytes)

ESM 7

(CSV 333 bytes)

ESM 8

(CSV 342 bytes)

ESM 9

(CSV 337 bytes)

ESM 10

(CSV 306 bytes)

ESM 11

(CSV 496 bytes)

ESM 12

(CSV 515 bytes)

ESM 13

(CSV 569 bytes)

ESM 14

(CSV 475 bytes)

ESM 15

(CSV 504 bytes)

ESM 16

(CSV 413 bytes)

ESM 17

(CSV 254 bytes)

ESM 18

(CSV 207 bytes)

ESM 19

(CSV 272 bytes)

ESM 20

(DOCX 406 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roshani, A., Mohammadi, M., Bahadori, T. et al. Comparison of different transient gene expression systems for the production of a new humanized anti-HER2 monoclonal antibody (Hersintuzumab). DARU J Pharm Sci 31, 221–231 (2023). https://doi.org/10.1007/s40199-023-00477-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-023-00477-9

Keywords

Navigation