Skip to main content
Log in

Transgenic Rice Plants Expressing a Modified cry1Ca1 Gene are Resistant to Spodoptera litura and Chilo suppressalis

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Nucleotide sequence encoding the truncated insecticidal Cry1Ca1 protein from Bacillus thuringiensis was extensively modified based on the codon usage of rice genes. The overall G + C contents of the synthetic cry1Ca1 coding sequence were raised to 65% with an additional bias of enriching for G and C ending codons as preferred by monocots. The synthetic gene was introduced into the Chinese japonica variety, Xiushui 11, by Agrobacterium-mediated transformation. Transgenic rice plants harboring this gene were highly resistant to Chilo suppressalis and Spodoptera litura larvae as revealed by insect bioassays. High levels of Cry1Ca1 protein were obtained in the leaves of transgenic rice, which were effective in achieving 100% mortality of S. litura and C. suppressalis larvae. The levels of Cry1Ca1 expression in the leaves of these transgenic plants were up to 0.34% of the total soluble proteins. The larvae of C. suppressalis and S. litura could consume a maximum of 1.89  and 4.89 mm2 of transgenic leaf area whereas the consumption of non-transgenic leaves by these larvae was significantly higher; 58.33 and 61.22 mm2, respectively. Analysis of R1 transgenic plants indicated that the cry1Ca1 was inherited by the progeny plants and provided complete protection against C. suppressalis and S. litura larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lee, M. K., Aguda, R. M., Cohen, M. B., Gould, F. L., & Dean, D. H. (1997). Determination of binding of Bacillus thuringiensis delta-endotoxin receptors to rice stem borer midguts. Applied and Environmental Microbiology, 63, 1453–1459.

    CAS  Google Scholar 

  2. Wang, Z. G., Shu, Q. Y., Ye, G. Y., Cui, H. R., Wu, D. X., Altosaar, I., et al. (2002). Genetic analysis of resistance of Bt rice to stripe stem borer (Chilo suppressalis). Euphytica, 123, 379–386.

    Article  CAS  Google Scholar 

  3. Sudhir, K. S., Biswas, R., Garg, D. K., Gyawali, B. K., Haque, N. M. M., Ijaj, P., et al. (2004). Management of stem borers of rice and wheat in rice-wheat system of Pakistan, Nepal, India and Bangladesh. Rice-Wheat Consortium for the Indo-Gangetic Plains (p. 204). Rice-Wheat Consortium Paper Series 17. New Delhi, India.

  4. Muralidharan, K., & Pasalu, I. C. (2006). Assessments of crop losses in rice ecosystems due to stem borer damage (Lepidoptera: Pyralidae). Crop Protection, 25, 409–417.

    Article  Google Scholar 

  5. Breitler, J. C., Vassal, J. M., Catala, M. D., Meynard, D., Marfa, V., Mele, E., et al. (2004). Bt rice harbouring cry genes controlled by a constitutive or wound-inducible promoter: protection and transgene expression under Mediterranean field conditions. Plant Biotechnology Journal, 2, 417–430.

    Article  CAS  Google Scholar 

  6. Rao, G. V. R., Wightman, J. A., & Ranga Rao, D. V. (1993). World review of the natural enemies and diseases of Spodoptera litura (F.) (Lepidoptera: Noctuidae). Insect Science and its Application, 14, 273–284.

    Google Scholar 

  7. Dale, D. (1994). Insect pests of the rice plant: Their biology and ecology. In E. A. Heinrichs (Ed.), Biology and management of rice insects. New Delhi, India: Wiley Eastern Limited, New Age International Limited.

    Google Scholar 

  8. Alcantara, E. P., Aguda, R. M., Curtiss, A., Dean, D. H., & Cohen, M. B. (2004). Bacillus thuringiensis-endotoxin binding to brush border membrane vesicles of rice stem borers. Archives of Insect Biochemistry and Physiology, 55, 169–177.

    Article  CAS  Google Scholar 

  9. Hofte, H., & Whiteley, H. R. (1989). Insecticidal crystal proteins of Bacillus thuringiensis. Microbiological Reviews, 53, 242–255.

    CAS  Google Scholar 

  10. Visser, B., Munsterman, E., Stoker, A., & Dirkse, W. G. (1990). A novel Bacillus thuringiensis gene encoding a Spodoptera-exigua-specific crystal protein. Journal of Bacteriology, 172, 6783–6788.

    CAS  Google Scholar 

  11. Crickmore, N., Zeigler, D. R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., et al. (1998). Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62, 807–813.

    CAS  Google Scholar 

  12. Zhao, J. Z., Cao, J., Li, Y., Collins, H. L., Roush, R. T., Earle, E. D., et al. (2003). Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nature Biotechnology, 21, 1493–1497.

    Article  CAS  Google Scholar 

  13. Sardana, R., Dukiandjiev, S., Giband, M., Cheng, X. Y., Cowan, K., Sauder, C., et al. (1996). Construction and rapid testing of synthetic and modified toxin gene sequences CryIA (b&c) by expression in maize endosperm culture. Plant Cell Reports, 15, 677–681.

    Article  CAS  Google Scholar 

  14. Gutierrez, R. A., MacIntosh, G. C., & Green, P. J. (1999). Current perspectives on mRNA stability in plants: Multiple levels and mechanisms of control. Trends in Plant Science, 4, 429–438.

    Article  Google Scholar 

  15. Culbertson, M. R., & Leeds, P. F. (2003). Looking at mRNA decay pathways through the window of molecular evolution. Current Opinion in Genetics and Development, 13, 207–214.

    Article  CAS  Google Scholar 

  16. Datla, R. S. S., Bekkaoui, F., Hammerlindl, J. K., Pilate, G., Dunstan, D. I., & Crosby, W. L. (1993). Improved high-level constitutive foreign gene-expression in plants using an AMV RNA4 untranslated leader sequence. Plant Science, 94, 139–149.

    Article  CAS  Google Scholar 

  17. Sambrook, J., & Russell, D. W. (2001). Molecular cloning: A laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

    Google Scholar 

  18. Holsters, M., Silva, B., Vanvliet, F., Hernalsteens, J. P., Genetello, C., VanMontagu, M., et al. (1978). In vivo transfer of Ti-plasmid of Agrobacterium tumefaciens to Escherichia coli. Molecular and General Genetics, 163, 335–338.

    Article  CAS  Google Scholar 

  19. Martinez-Trujillo, M., Cabrera-Ponce, J. L., & Herrera-Estrella, L. (2003). Improvement of rice transformation using bombardment of scutellum-derived calli. Plant Molecular Biology Reporter, 21, 429–437.

    Article  CAS  Google Scholar 

  20. Zaidi, M. A., Mohammadi, M., Postel, S., Masson, L., & Altosaar, I. (2005). The Bt gene cry2Aa2 driven by a tissue specific ST-LS1 promoter from potato effectively controls Heliothis virescens. Transgenic Research, 14, 289–298.

    Article  CAS  Google Scholar 

  21. Ge, A. Z., Pfister, R. M., & Dean, D. H. (1990). Hyperexpression of a Bacillus thuringiensis δ-endotoxin encoding gene in Escherichia coli: Properties of the product. Gene, 93, 49–54.

    Article  CAS  Google Scholar 

  22. Ye, G. Y., Shu, Q. Y., Cui, H. R., Hu, C., Gao, M. W., Xia, Y. W., et al. (2000). A leaf-section bioassay for evaluating rice stem borer resistance in transgenic rice containing a synthetic cry1Ab gene from Bacillus thuringiensis Berliner. Bulletin of Entomological Research, 90, 179–182.

    Article  CAS  Google Scholar 

  23. Tang, Q. Y., & Feng, M. G. (2002). DPS © data processing system: Experimental design, statistical analysis and data mining. Beijing, China: Science Press.

    Google Scholar 

  24. Leroy, T., Henry, A. M., Royer, M., Altosaar, I., Frutos, R., Duris, D., et al. (2000). Genetically modified coffee plants expressing the Bacillus thuringiensis cry1Ac gene for resistance to leaf miner. Plant Cell Reports, 19, 382–389.

    Article  CAS  Google Scholar 

  25. High, S. M., Cohen, M. B., Shu, Q. Y., & Altosaar, I. (2004). Achieving successful deployment of Bt rice. Trends in Plant Science, 9, 286–292.

    Article  CAS  Google Scholar 

  26. Bashir, K., Husnain, T., Fatima, T., Riaz, N., Makhdoom, R., & Riazuddin, S. (2005). Novel indica basmati line (B-370) expressing two unrelated genes of Bacillus thuringiensis is highly resistant to two lepidopteran insects in the field. Crop Protection, 24, 870–879.

    Article  CAS  Google Scholar 

  27. Christou, P., Capell, T., Kohli, A., Gatehouse, J. A., & Gatehouse, A. M. R. (2006). Recent developments and future prospects in insect pest control in transgenic crops. Trends in Plant Science, 11, 302–308.

    Article  CAS  Google Scholar 

  28. Zaidi, M. A., Cheng, X., Xu, H., & Altosaar, I. (2006). Ex situ application of foliar-produced lepidoptericides from transgenic rice to control Pieris rapae and Cry1Ab stability in vivo. Crop Protection, 25, 748–752.

    Article  CAS  Google Scholar 

  29. Valderrama, A. M., Velásquez, N., Rodríguez, E., Zapata, A., Zaidi, M. A., & Altosaar, I. (2007). Resistance to the Guatemalan potato moth, Tecia solanivora Povolny in three transgenic Andean potato varieties expressing Cry1Ac protein. Journal of Economic Entomology, 100, 172–179.

    Article  Google Scholar 

  30. Kim, S., Kim, C., Li, W., Kim, T., Li, Y., Zaidi, M. A., et al. (2008). Inheritance and field performance of transgenic Korean Bt rice lines resistant to rice yellow stem borer. Euphytica, 164, 829–839.

    Article  Google Scholar 

  31. Gulbitti-Onarici, S., Zaidi, M. A., Taga, I., Ozcan, S., & Altosaar, I. (2009). Expression of Cry1Ac in transgenic tobacco plants under the control of a wound-inducible promoter (AoPR1) isolated from Asparagus officinalis to control Heliothis virescens and Manduca sexta. Molecular Biotechnology, 42, 341–349.

    Article  CAS  Google Scholar 

  32. Perlak, F. J., Fuchs, R. L., Dean, D. A., Mcpherson, S. L., & Fischhoff, D. A. (1991). Modification of the coding sequence enhances plant expression of insect control protein genes. Proceedings of the National Academy of Sciences of the United States of America, 88, 3324–3328.

    Article  CAS  Google Scholar 

  33. King, G. J. (2002). Through a genome, darkly: Comparative analysis of plant chromosomal DNA. Plant Molecular Biology, 48, 5–20.

    Article  CAS  Google Scholar 

  34. Kawabe, A., & Miyashita, N. T. (2003). Patterns of codon usage bias in three dicot and four monocot plant species. Genes & Genetic Systems, 78, 343–352.

    Article  CAS  Google Scholar 

  35. Cheng, X. Y., Sardana, R., Kaplan, H., & Altosaar, I. (1998). Agrobacterium-transformed rice plants expressing synthetic cryIA(b) and cryIA(c) genes are highly toxic to striped stem borer and yellow stem borer. Proceedings of the National Academy of Sciences of the United States of America, 95, 2767–2772.

    Article  CAS  Google Scholar 

  36. Maqbool, S. B., Husnain, T., Riazuddin, S., Masson, L., & Christou, P. (1998). Effective control of yellow stem borer and rice leaf folder in transgenic rice indica varieties Bas 370 and M7 using the novel δ-endotoxin cryIIA Bacillus thuringiensis gene. Molecular Breeding, 6, 1–7.

    Google Scholar 

  37. Butaye, K. M. J., Cammue, B. P. A., Delaure, S. L., & De Bolle, M. F. C. (2005). Approaches to minimize variation of transgene expression in plants. Molecular Breeding, 16, 79–91.

    Article  Google Scholar 

  38. Zaidi, M. A., Cheng, X. Y., & Altosaar, I. (2007). Characterization of left-border flanking sequences of T-DNA integration in transgenic rice (Oryza sativa L.) expressing cry1Ab. Cereal Research Communications, 35(137), 5–1383.

    Google Scholar 

  39. Cao, J., Tang, J. D., Strizhov, N., Shelton, A. M., & Earle, E. D. (1999). Transgenic broccoli with high levels of Bacillus thuringiensis Cry1C protein control diamondback moth larvae resistant to Cry1A or Cry1C. Molecular Breeding, 5, 131–141.

    Article  CAS  Google Scholar 

  40. Tang, W., Chen, H., Xu, C. G., Li, X. H., Lin, Y. J., & Zhang, Q. F. (2006). Development of insect-resistant transgenic indica rice with a synthetic cry1C* gene. Molecular Breeding, 18, 1–10.

    Article  CAS  Google Scholar 

  41. Ferré, J., & Van Rie, J. (2002). Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annual Review of Entomology, 47, 501–533.

    Article  Google Scholar 

  42. van der Salm, T., Bosch, D., Honee, G., Feng, L., Munsteman, E., Bakker, P., et al. (1994). Insect resistance of transgenic plants that express modified Bacillus thuringiensis cryIA(b) and cryIC genes: A resistance management strategy. Plant Molecular Biology, 26, 51–59.

    Article  Google Scholar 

  43. Kaur, S. (2006). Molecular approaches for identification and construction of novel insecticidal genes for crop protection. World Journal of Microbiology and Biotechnology, 22, 233–253.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by The Rockefeller Foundation International Rice Biotechnology Program, Natural Sciences and Engineering Research Council of Canada, and the National Basic Research Program of China (No. 2007CB109202). MAZ is grateful for a UNESCO fellowship. Greatly appreciated is the expertise of Nicola Adams who helped prepare the plasmids for repair mutagenesis. We are thankful to the Bacillus Genetic Stock Center, USA, for providing us the wild-type cry1Ca1 clone in E. coli (ECE125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Illimar Altosaar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaidi, M.A., Ye, G., Yao, H. et al. Transgenic Rice Plants Expressing a Modified cry1Ca1 Gene are Resistant to Spodoptera litura and Chilo suppressalis . Mol Biotechnol 43, 232–242 (2009). https://doi.org/10.1007/s12033-009-9201-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9201-9

Keywords

Navigation