Skip to main content
Log in

The role of SWI/SNF complexes in digestive system neoplasms

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Chromatin remodeling is a critical step in the DNA damage response, and the ATP-dependent chromatin remodelers are a group of epigenetic regulators that alter nucleosome assembly and regulate transcription factor accessibility to DNA, preventing genomic instability and tumorigenesis caused by DNA damage. The SWI/SNF chromatin remodeling complex is one of them, and mutations in the gene encoding the SWI/SNF subunit are frequently found in digestive tumors. We review the most recent literature on the role of SWI/SNF complexes in digestive tumorigenesis, with different SWI/SNF subunits playing different roles. They regulate the biological behavior of tumor cells, participate in multiple signaling pathways, interact with multiple genes, and have some correlation with the prognosis of patients. Their carcinogenic properties may help discover new therapeutic targets. Understanding the mutations and defects of SWI/SNF complexes, as well as the underlying functional mechanisms, may lead to new strategies for treating the digestive system by targeting relevant genes or modulating the tumor microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The articles analyzed during the current study are available in the literature and listed in the references.

References

  1. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  2. Zheng RS, Zhang SW, Sun KX, et al. Cancer statistics in China, 2016. Zhonghua Zhong Liu Za Zhi. 2023. https://doi.org/10.3760/cma.j.cn112152-20220922-00647.

    Article  PubMed  Google Scholar 

  3. Wei W, Zeng H, Zheng R, et al. Cancer registration in China and its role in cancer prevention and control. Lancet Oncol. 2020. https://doi.org/10.1016/S1470-2045(20)30073-5.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cao W, Chen H-D, Yu Y-W, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J (Engl). 2021. https://doi.org/10.1097/CM9.0000000000001474.

    Article  PubMed  Google Scholar 

  5. Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J. 2022. https://doi.org/10.1097/CM9.0000000000002108.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nagtegaal ID, Odze RD, Klimstra D, et al. The 2019 WHO classification of tumours of the digestive system. Histopathology. 2020. https://doi.org/10.1111/his.13975.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jf F. WHO Classification of digestive tumors: the fourth edition. Ann Pathol. 2011. https://doi.org/10.1016/j.annpat.2011.08.001.

    Article  Google Scholar 

  8. Kang MA, Lee J-S. A newly assigned role of CTCF in cellular response to broken DNAs. Biomolecules. 2021. https://doi.org/10.3390/biom11030363.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ribeiro-Silva C, Vermeulen W, Lans H. SWI/SNF: Complex complexes in genome stability and cancer. DNA Repair. 2019. https://doi.org/10.1016/j.dnarep.2019.03.007.

    Article  PubMed  Google Scholar 

  10. Moison C, Chagraoui J, Caron M-C, et al. Zinc finger protein E4F1 cooperates with PARP-1 and BRG1 to promote DNA double-strand break repair. Proc Natl Acad Sci U S A. 2021. https://doi.org/10.1073/pnas.2019408118.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Vaicekauskaitė I, Sabaliauskaitė R, Lazutka JR, et al. The emerging role of chromatin remodeling complexes in ovarian cancer. IJMS. 2022. https://doi.org/10.3390/ijms232213670.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hargreaves DC, Crabtree GR. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 2011. https://doi.org/10.1038/cr.2011.32.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang W, Côté J, Xue Y, et al. Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J. 1996;15:5370–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pulice JL, Kadoch C. Composition and function of Mammalian SWI/SNF chromatin remodeling complexes in human disease. Cold Spring Harb Symp Quant Biol. 2016. https://doi.org/10.1101/sqb.2016.81.031021.

    Article  PubMed  Google Scholar 

  15. Mittal P, Roberts CWM. The SWI/SNF complex in cancer—biology, biomarkers and therapy. Nat Rev Clin Oncol. 2020. https://doi.org/10.1038/s41571-020-0357-3.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Romero OA, Sanchez-Cespedes M. The SWI/SNF genetic blockade: effects in cell differentiation, cancer and developmental diseases. Oncogene. 2014. https://doi.org/10.1038/onc.2013.227.

    Article  PubMed  Google Scholar 

  17. Mashtalir N, D’Avino AR, Michel BC, et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell. 2018. https://doi.org/10.1016/j.cell.2018.09.032.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sima X, He J, Peng J, et al. The genetic alteration spectrum of the SWI/SNF complex: The oncogenic roles of BRD9 and ACTL6A. PLoS ONE. 2019. https://doi.org/10.1371/journal.pone.0222305.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Drage MG, Tippayawong M, Agoston AT, et al. Morphological features and prognostic significance of ARID1A-deficient esophageal adenocarcinomas. Arch Pathol Lab Med. 2017. https://doi.org/10.5858/arpa.2016-0318-OA.

    Article  PubMed  Google Scholar 

  20. Lowenthal BM, Nason KS, Pennathur A, et al. Loss of ARID1A expression is associated with DNA mismatch repair protein deficiency and favorable prognosis in advanced stage surgically resected esophageal adenocarcinoma. Hum Pathol. 2019. https://doi.org/10.1016/j.humpath.2019.09.004.

    Article  PubMed  Google Scholar 

  21. Schallenberg S, Bork J, Essakly A, et al. Loss of the SWI/SNF-ATPase subunit members SMARCF1 (ARID1A), SMARCA2 (BRM), SMARCA4 (BRG1) and SMARCB1 (INI1) in oesophageal adenocarcinoma. BMC Cancer. 2020. https://doi.org/10.1186/s12885-019-6425-3.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhou Z, Huang D, Yang S, et al. Clinicopathological significance, related molecular changes and tumor immune response analysis of the abnormal SWI/SNF complex subunit PBRM1 in gastric adenocarcinoma. Pathol Oncol Res. 2022. https://doi.org/10.3389/pore.2022.1610479.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Glückstein M-I, Dintner S, Arndt TT, et al. Comprehensive immunohistochemical study of the SWI/SNF complex expression status in gastric cancer reveals an adverse prognosis of SWI/SNF deficiency in genomically stable gastric carcinomas. Cancers (Basel). 2021. https://doi.org/10.3390/cancers13153894.

    Article  PubMed  Google Scholar 

  24. Zhu YP, Sheng LL, Wu J, et al. Loss of ARID1A expression is associated with poor prognosis in patients with gastric cancer. Hum Pathol. 2018. https://doi.org/10.1016/j.humpath.2018.04.003.

    Article  PubMed  Google Scholar 

  25. Shih-Chiang Huang, Chen K-H, Ng K-F, et al. Dedifferentiation-like tubular and solid carcinoma of the stomach shows phenotypic divergence and association with deficient SWI/SNF complex. Virchows Arch. 2022. https://doi.org/10.1007/s00428-022-03288-6

  26. Tsuruta S, Kohashi K, Yamada Y, et al. Solid-type poorly differentiated adenocarcinoma of the stomach: Deficiency of mismatch repair and SWI/SNF complex. Cancer Sci. 2020. https://doi.org/10.1111/cas.14301.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Huang S, Ng K, Yeh T, et al. The clinicopathological and molecular analysis of gastric cancer with altered SMARCA4 expression. Histopathology. 2020. https://doi.org/10.1111/his.14117.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Huang S-C, Ng K-F, Chang IY-F, et al. The clinicopathological significance of SWI/SNF alterations in gastric cancer is associated with the molecular subtypes. PLoS One. 2021. https://doi.org/10.1371/journal.pone.0245356

  29. Zhang Z, Li Q, Sun S, et al. Clinicopathological and prognostic significance of SWI/SNF complex subunits in undifferentiated gastric carcinoma. World J Surg Onc. 2022. https://doi.org/10.1186/s12957-022-02847-0.

    Article  Google Scholar 

  30. Sasaki T, Kohashi K, Kawatoko S, et al. Tumor progression by epithelial-mesenchymal transition in ARID1A- and SMARCA4-aberrant solid-type poorly differentiated gastric adenocarcinoma. Virchows Arch. 2022. https://doi.org/10.1007/s00428-021-03261-9.

    Article  PubMed  Google Scholar 

  31. Mochizuki K, Kawai M, Odate T, et al. SMARCB1/INI1 is diagnostically useful in distinguishing α-fetoprotein-producing gastric carcinoma from hepatocellular carcinoma. Anticancer Res. 2018;38:6865.

    Article  CAS  PubMed  Google Scholar 

  32. Sen M, Wang X, Hamdan FH, et al. ARID1A facilitates KRAS signaling-regulated enhancer activity in an AP1-dependent manner in colorectal cancer cells. Clin Epigenetics. 2019. https://doi.org/10.1186/s13148-019-0690-5.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yang Z, Huang D, Meng M, et al. BAF53A drives colorectal cancer development by regulating DUSP5-mediated ERK phosphorylation. Cell Death Dis. 2022. https://doi.org/10.1038/s41419-022-05499-w.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ke S-B, Qiu H, Chen J-M, et al. MicroRNA-202-5p functions as a tumor suppressor in colorectal carcinoma by directly targeting SMARCC1. Gene. 2018. https://doi.org/10.1016/j.gene.2018.08.064.

    Article  PubMed  Google Scholar 

  35. Melloul S, Mosnier J-F, Masliah-Planchon J, et al. Loss of SMARCB1 expression in colon carcinoma. CBM. 2020. https://doi.org/10.3233/CBM-190287.

    Article  Google Scholar 

  36. Wang J, Andrici J, Sioson L, et al. Loss of INI1 expression in colorectal carcinoma is associated with high tumor grade, poor survival, BRAFV600E mutation, and mismatch repair deficiency. Hum Pathol. 2016. https://doi.org/10.1016/j.humpath.2016.04.018.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Villatoro TM, Ma C, Pai RK. Switch/sucrose nonfermenting nucleosome complex–deficient colorectal carcinomas have distinct clinicopathologic features. Hum Pathol. 2020. https://doi.org/10.1016/j.humpath.2020.03.009.

    Article  PubMed  Google Scholar 

  38. Ahadi MS, Fuchs TL, Clarkson A, et al. SWI/SNF complex (SMARCA4, SMARCA2, INI1/SMARCB1) deficient colorectal carcinomas are strongly associated with microsatellite instability: An incidence study in 4508 colorectal carcinomas. Histopathology. 2022. https://doi.org/10.1111/his.14612.

    Article  PubMed  Google Scholar 

  39. Agaimy A, Daum O, Märkl B, et al. SWI/SNF Complex-deficient Undifferentiated/Rhabdoid carcinomas of the gastrointestinal tract: a series of 13 cases highlighting mutually exclusive loss of SMARCA4 and SMARCA2 and frequent Co-inactivation of SMARCB1 and SMARCA2. Am J Surg Pathol. 2016. https://doi.org/10.1097/PAS.0000000000000554.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Agaimy A, Daum O, Michal M, et al. Undifferentiated large cell/rhabdoid carcinoma presenting in the intestines of patients with concurrent or recent non-small cell lung cancer (NSCLC): clinicopathologic and molecular analysis of 14 cases indicates an unusual pattern of dedifferentiated metastases. Virchows Arch. 2021. https://doi.org/10.1007/s00428-021-03032-6.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fang J-Z, Li C, Liu X-Y, et al. Hepatocyte-specific Arid1a deficiency initiates mouse steatohepatitis and hepatocellular carcinoma. PLoS ONE. 2015. https://doi.org/10.1371/journal.pone.0143042.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Midorikawa Y, Yamamoto S, Tatsuno K, et al. Accumulation of molecular aberrations distinctive to hepatocellular carcinoma progression. Can Res. 2020. https://doi.org/10.1158/0008-5472.CAN-20-0225.

    Article  Google Scholar 

  43. Zhang F-K, Ni Q-Z, Wang K, et al. Targeting USP9X–AMPK axis in ARID1A-Deficient hepatocellular carcinoma. Cell Mol Gastroenterol Hepatol. 2022. https://doi.org/10.1016/j.jcmgh.2022.03.009.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang L, Sun T, Wu X-Y, et al. Delineation of a SMARCA4-specific competing endogenous RNA network and its function in hepatocellular carcinoma. World J Clin Cases. 2022. https://doi.org/10.12998/wjcc.v10.i29.10501

  45. Chen Z, Lu X, Jia D, et al. Hepatic SMARCA4 predicts HCC recurrence and promotes tumour cell proliferation by regulating SMAD6 expression. Cell Death Dis. 2018. https://doi.org/10.1038/s41419-017-0090-8.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Guerrero-Martínez JA, Reyes JC. High expression of SMARCA4 or SMARCA2 is frequently associated with an opposite prognosis in cancer. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-20217-3.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wang P, Song X, Cao D, et al. Oncogene-dependent function of BRG1 in hepatocarcinogenesis. Cell Death Dis. 2020. https://doi.org/10.1038/s41419-020-2289-3.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hong SH, Son KH, Ha SY, et al. Nucleoporin 210 serves a key scaffold for SMARCB1 in liver cancer. Can Res. 2021. https://doi.org/10.1158/0008-5472.CAN-20-0568.

    Article  Google Scholar 

  49. Cai X, Zhou J, Deng J, Chen Z. Prognostic biomarker SMARCC1 and its association with immune infiltrates in hepatocellular carcinoma. Cancer Cell Int. 2021. https://doi.org/10.1186/s12935-021-02413-w.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Biankin AV, Waddell N, Kassahn KS, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012. https://doi.org/10.1038/nature11547.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Okamura R, Kato S, Lee S, et al. ARID1A alterations function as a biomarker for longer progression-free survival after anti-PD-1/PD-L1 immunotherapy. J Immunother Cancer. 2020. https://doi.org/10.1136/jitc-2019-000438.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Botta GP, Kato S, Patel H, et al. SWI/SNF complex alterations as a biomarker of immunotherapy efficacy in pancreatic cancer. JCI Insight. 2021. https://doi.org/10.1172/jci.insight.150453.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Shain AH, Giacomini CP, Matsukuma K, et al. Convergent structural alterations define SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer. Proc Natl Acad Sci U S A. 2012. https://doi.org/10.1073/pnas.1114817109.

    Article  PubMed  Google Scholar 

  54. Batcher E, Madaj P, Gianoukakis AG. Pancreatic neuroendocrine tumors. Endocr Res. 2011. https://doi.org/10.3109/07435800.2010.525085.

    Article  PubMed  Google Scholar 

  55. Han X, Chen W, Chen P, et al. Aberration of ARID1A is associated with the tumorigenesis and prognosis of sporadic nonfunctional pancreatic neuroendocrine tumors. Pancreas. 2020. https://doi.org/10.1097/MPA.0000000000001535.

    Article  PubMed  Google Scholar 

  56. Sotozono H, Kanki A, Yasokawa K, et al. Value of 3-T MR imaging in intraductal papillary mucinous neoplasm with a concomitant invasive carcinoma. Eur Radiol. 2022. https://doi.org/10.1007/s00330-022-08881-6.

    Article  PubMed  Google Scholar 

  57. Kimura Y, Fukuda A, Ogawa S, et al. ARID1A maintains differentiation of pancreatic ductal cells and inhibits development of pancreatic ductal adenocarcinoma in mice. Gastroenterology. 2018. https://doi.org/10.1053/j.gastro.2018.03.039.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ferri-Borgogno S, Barui S, McGee AM, et al. Paradoxical role of AT-rich interactive domain 1A in restraining pancreatic carcinogenesis. Cancers (Basel). 2020. https://doi.org/10.3390/cancers12092695.

    Article  PubMed  Google Scholar 

  59. Tessier-Cloutier B, Schaeffer DF, Bacani J, et al. Loss of switch/sucrose non-fermenting complex protein expression in undifferentiated gastrointestinal and pancreatic carcinomas. Histopathology. 2020. https://doi.org/10.1111/his.14096.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yamamoto T, Kohashi K, Yamada Y, et al. Relationship between cellular morphology and abnormality of SWI/SNF complex subunits in pancreatic undifferentiated carcinoma. J Cancer Res Clin Oncol. 2022. https://doi.org/10.1007/s00432-021-03860-8.

    Article  PubMed  PubMed Central  Google Scholar 

  61. L L, Y L, Y G, et al. Potential roles of PBRM1 on immune infiltration in cholangiocarcinoma. Int J Clin Exp Pathol 2020;13(10):2661–2676.

  62. Zheng S, Zhu Y, Zhao Z, et al. Liver fluke infection and cholangiocarcinoma: a review. Parasitol Res. 2017. https://doi.org/10.1007/s00436-016-5276-y.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Namjan A, Techasen A, Loilome W, et al. ARID1A alterations and their clinical significance in cholangiocarcinoma. PeerJ. 2020. https://doi.org/10.7717/peerj.10464.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Fukunaga Y, Fukuda A, Omatsu M, et al. Loss of Arid1a and Pten in pancreatic ductal cells induces Intraductal Tubulopapillary Neoplasm via the YAP/TAZ pathway. Gastroenterology. 2022. https://doi.org/10.1053/j.gastro.2022.04.020.

    Article  PubMed  Google Scholar 

  65. Wang W, Friedland SC, Guo B, et al. ARID1A, a SWI/SNF subunit, is critical to acinar cell homeostasis and regeneration and is a barrier to transformation and epithelial-mesenchymal transition in the pancreas. Gut. 2019. https://doi.org/10.1136/gutjnl-2017-315541.

    Article  PubMed  Google Scholar 

  66. Baldi S, Zhang Q, Zhang Z, et al. ARID1A downregulation promotes cell proliferation and migration of colon cancer via VIM activation and CDH1 suppression. J Cell Mol Med. 2022. https://doi.org/10.1111/jcmm.17590.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Niedermaier B, Sak A, Zernickel E, et al. Targeting ARID1A-mutant colorectal cancer: depletion of ARID1B increases radiosensitivity and modulates DNA damage response. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-54757-z.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Dong X, Song S, Li Y, et al. Loss of ARID1A activates mTOR signaling and SOX9 in gastric adenocarcinoma-rationale for targeting ARID1A deficiency. Gut. 2022. https://doi.org/10.1136/gutjnl-2020-322660.

    Article  PubMed  Google Scholar 

  69. Zhu Y, Li K, Yan L, et al. miR-223-3p promotes cell proliferation and invasion by targeting Arid1a in gastric cancer. Acta Biochim Biophys Sin (Shanghai). 2020. https://doi.org/10.1093/abbs/gmz151.

    Article  PubMed  Google Scholar 

  70. Bala P, Singh AK, Kavadipula P, et al. Exome sequencing identifies ARID2 as a novel tumor suppressor in early-onset sporadic rectal cancer. Oncogene. 2021. https://doi.org/10.1038/s41388-020-01537-z.

    Article  PubMed  Google Scholar 

  71. Li R, Li Y, Qin H, et al. ACTL6A promotes the proliferation of esophageal squamous cell carcinoma cells and correlates with poor clinical outcomes. OTT Volume. 2021. https://doi.org/10.2147/OTT.S288807.

    Article  Google Scholar 

  72. Wei Z, Xu J, Li W, et al. SMARCC1 enters the nucleus via KPNA2 and plays an oncogenic role in bladder cancer. Front Mol Biosci. 2022. https://doi.org/10.3389/fmolb.2022.902220.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lüönd F, Sugiyama N, Bill R, et al. Distinct contributions of partial and full EMT to breast cancer malignancy. Dev Cell. 2021. https://doi.org/10.1016/j.devcel.2021.11.006.

    Article  PubMed  Google Scholar 

  74. Erfani M, Zamani M, Hosseini SY, et al. ARID1A regulates E-cadherin expression in colorectal cancer cells: a promising candidate therapeutic target. Mol Biol Rep. 2021. https://doi.org/10.1007/s11033-021-06671-9.

    Article  PubMed  Google Scholar 

  75. Tomihara H, Carbone F, Perelli L, et al. Loss of ARID1A promotes epithelial-mesenchymal transition and sensitizes pancreatic tumors to proteotoxic stress. Can Res. 2021. https://doi.org/10.1158/0008-5472.CAN-19-3922.

    Article  Google Scholar 

  76. Huang L-Y, Zhao J, Chen H, et al. SCFFBW7-mediated degradation of Brg1 suppresses gastric cancer metastasis. Nat Commun. 2018. https://doi.org/10.1038/s41467-018-06038-y.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hoxhaj G, Manning BD. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer. 2020. https://doi.org/10.1038/s41568-019-0216-7.

    Article  PubMed  Google Scholar 

  78. Sun D, Teng F, Xing P, et al. ARID1A serves as a receivable biomarker for the resistance to EGFR-TKIs in non-small cell lung cancer. Mol Med. 2021. https://doi.org/10.1186/s10020-021-00400-5.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kim Y-B, Ahn JM, Bae WJ, et al. Functional loss of ARID1A is tightly associated with high PD-L1 expression in gastric cancer. Int J Cancer. 2019. https://doi.org/10.1002/ijc.32140.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zhang S, Zhou Y-F, Cao J, et al. mTORC1 promotes ARID1A degradation and oncogenic chromatin remodeling in hepatocellular carcinoma. Can Res. 2021. https://doi.org/10.1158/0008-5472.CAN-21-0206.

    Article  Google Scholar 

  81. Wang SC, Nassour I, Xiao S, et al. SWI/SNF component ARID1A restrains pancreatic neoplasia formation. Gut. 2019. https://doi.org/10.1136/gutjnl-2017-315490.

    Article  PubMed  Google Scholar 

  82. Cunningham R, Hansen CG. The Hippo pathway in cancer: YAP/TAZ and TEAD as therapeutic targets in cancer. Clin Sci (Lond). 2022. https://doi.org/10.1042/CS20201474.

    Article  PubMed  Google Scholar 

  83. Chang L, Azzolin L, Di Biagio D, et al. The SWI/SNF complex is a mechanoregulated inhibitor of YAP and TAZ. Nature. 2018. https://doi.org/10.1038/s41586-018-0658-1.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hillmer RE, Link BA. The roles of hippo signaling transducers Yap and Taz in chromatin remodeling. Cells. 2019. https://doi.org/10.3390/cells8050502.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Araki O, Tsuda M, Omatsu M, et al. Brg1 controls stemness and metastasis of pancreatic cancer through regulating hypoxia pathway. Oncogene. 2023. https://doi.org/10.1038/s41388-023-02716-4.

    Article  PubMed  Google Scholar 

  86. Liu S, Cao W, Niu Y, et al. Single-PanIN-seq unveils that ARID1A deficiency promotes pancreatic tumorigenesis by attenuating KRAS-induced senescence. Elife. 2021. https://doi.org/10.7554/eLife.64204.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Guo B, Friedland SC, Alexander W, et al. Arid1a mutation suppresses TGF-β signaling and induces cholangiocarcinoma. Cell Rep. 2022. https://doi.org/10.1016/j.celrep.2022.111253.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Tokunaga R, Xiu J, Goldberg RM, et al. The impact of ARID1A mutation on molecular characteristics in colorectal cancer. Eur J Cancer. 2020. https://doi.org/10.1016/j.ejca.2020.09.006.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kamori T, Oki E, Shimada Y, et al. The effects of ARID1A mutations on colorectal cancer and associations with PD-L1 expression by stromal cells. Cancer Reports. 2022. https://doi.org/10.1002/cnr2.1420.

    Article  PubMed  Google Scholar 

  90. Huang W, Li H, Shi X, et al. Characterization of genomic alterations in Chinese colorectal cancer patients. Jpn J Clin Oncol. 2021. https://doi.org/10.1093/jjco/hyaa182.

    Article  PubMed  Google Scholar 

  91. Kim SY, Shen Q, Son K, et al. SMARCA4 oncogenic potential via IRAK1 enhancer to activate Gankyrin and AKR1B10 in liver cancer. Oncogene. 2021. https://doi.org/10.1038/s41388-021-01875-6.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Yao B, Gui T, Zeng X, et al. PRMT1-mediated H4R3me2a recruits SMARCA4 to promote colorectal cancer progression by enhancing EGFR signaling. Genome Med. 2021. https://doi.org/10.1186/s13073-021-00871-5.

    Article  PubMed  PubMed Central  Google Scholar 

  93. He D-D, Shang X-Y, Wang N, et al. BRD4 inhibition induces synthetic lethality in ARID2-deficient hepatocellular carcinoma by increasing DNA damage. Oncogene. 2022. https://doi.org/10.1038/s41388-022-02176-2.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wang R, Chen M, Ye X, et al. Role and potential clinical utility of ARID1A in gastrointestinal malignancy. Mutation Research/Reviews in Mutation Research. 2021. https://doi.org/10.1016/j.mrrev.2020.108360.

    Article  PubMed  Google Scholar 

  95. Hause RJ, Pritchard CC, Shendure J, et al. Classification and characterization of microsatellite instability across 18 cancer types. Nat Med. 2016. https://doi.org/10.1038/nm.4191.

    Article  PubMed  Google Scholar 

  96. Li Y, Yang X, Zhu W, et al. SWI/SNF complex gene variations are associated with a higher tumor mutational burden and a better response to immune checkpoint inhibitor treatment: a pan-cancer analysis of next-generation sequencing data corresponding to 4591 cases. Cancer Cell Int. 2022. https://doi.org/10.1186/s12935-022-02757-x.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Peng L, Li J, Wu J, et al. A pan-cancer analysis of SMARCA4 alterations in human cancers. Front Immunol. 2021. https://doi.org/10.3389/fimmu.2021.762598.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wei X-L, Wang D-S, Xi S-Y, et al. Clinicopathologic and prognostic relevance of ARID1A protein loss in colorectal cancer. World J Gastroenterol. 2014. https://doi.org/10.3748/wjg.v20.i48.18404.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by The National Natural Science Foundation of China (81802474).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, H.L., and J.Z.; Writing – Original Draft Preparation, H.L., X.Z.(Xin Zheng), and Y.Z.; Writing – Review & Editing, J.Z., H.L. and X.Z.(Xin Zheng),Y.Z. and X.Z.(Xiao Zhang). All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Yan Zhang or Jie Zheng.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

We assure you this manuscript has not been published in part or whole or is under consideration for publication elsewhere in any language. All the authors have thoroughly studied the manuscript and approved its consent and submission to the "Medical Oncology" journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, H., Zheng, X., Zhang, X. et al. The role of SWI/SNF complexes in digestive system neoplasms. Med Oncol 41, 119 (2024). https://doi.org/10.1007/s12032-024-02343-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-024-02343-3

Keywords

Navigation