Skip to main content

Advertisement

Log in

Value of 3-T MR imaging in intraductal papillary mucinous neoplasm with a concomitant invasive carcinoma

  • Gastrointestinal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To examine the value of 3-T MRI for evaluating the difference between the pancreatic parenchyma of intraductal papillary mucinous neoplasm with a concomitant invasive carcinoma (IPMN-IC) and the pancreatic parenchyma of patients without an IPMN-IC.

Methods

A total of 132 patients underwent abdominal 3-T MRI. Of the normal pancreatic parenchymal measurements, the pancreas-to-muscle signal intensity ratio in in-phase imaging (SIR-I), SIR in opposed-phase imaging (SIR-O), SIR in T2-weighted imaging (SIR-T2), ADC (×10−3 mm2/s) in DWI, and proton density fat fraction (PDFF [%]) in multi-echo 3D DIXON were calculated. The patients were divided into three groups (normal pancreas group: n = 60, intraductal papillary mucinous neoplasm (IPMN) group: n = 60, IPMN-IC group: n = 12).

Results

No significant differences were observed among the three groups in age, sex, body mass index, prevalence of diabetes mellitus, and hemoglobin A1c (p = 0.141 to p = 0.657). In comparisons among the three groups, the PDFF showed a significant difference (p < 0.001), and there were no significant differences among the three groups in SIR-I, SIR-O, SIR-T2, and ADC (p = 0.153 to p = 0.684). The PDFF of the pancreas was significantly higher in the IPMN-IC group than in the normal pancreas group or the IPMN group (p < 0.001 and p < 0.001, respectively), with no significant difference between the normal pancreas group and the IPMN group (p = 0.916).

Conclusions

These observations suggest that the PDFF of the pancreas is associated with the presence of IPMN-IC.

Key Points

• The cause and risk factors of IPMN with a concomitant invasive carcinoma have not yet been clarified.

• The PDFF of the pancreas was significantly higher in the IPMN-IC group than in the normal pancreas group or the IPMN group.

• Pancreatic PDFF may be a potential biomarker for the development of IPMN with a concomitant invasive carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

DM:

Diabetes mellitus

FOV:

Field of view

HbA1c:

Hemoglobin A1c

IPMN:

Intraductal papillary mucinous neoplasm

IPMN-IC:

Intraductal papillary mucinous neoplasm with a concomitant invasive carcinoma

PACS:

Picture archiving and communication system

PDAC:

Pancreatic ductal adenocarcinoma

PDFF:

Proton density fat fraction

SIR:

Signal intensity ratio

SIR-I:

Signal intensity ratio in in-phase imaging

SIR-O:

Signal intensity ratio in opposed-phase imaging

SIR-T2:

Signal intensity ratio in T2-weighted imaging

T1WI:

T1-weighted imaging

T2WI:

T2-weighted imaging

TE:

Echo time

TR:

Repetition time

TSE:

Turbo spin echo

References

  1. Kashiwagi K, Seino T, Fukuhara S et al (2018) Pancreatic fat content detected by computed tomography and its significant relationship with intraductal papillary mucinous neoplasm. Pancreas. 47(9):1087–1092

    Article  PubMed  Google Scholar 

  2. Yamaguchi K, Kanemitsu S, Hatori T et al (2011) Pancreatic ductal adenocarcinoma derived from IPMN and pancreatic ductal adenocarcinoma concomitant with IPMN. Pancreas. 40(4):571–580

    Article  PubMed  Google Scholar 

  3. Baiocchi GL, Molfino S, Frittoli B et al (2015) Increased risk of second malignancy in pancreatic intraductal papillary mucinous tumors: review of the literature. World J Gastroenterol. 21(23):7313–7319

    Article  PubMed  PubMed Central  Google Scholar 

  4. Omori Y, Ono Y, Tanino M et al (2019) Pathways of progression from intraductal papillary mucinous neoplasm to pancreatic ductal adenocarcinoma based on molecular features. Gastroenterology 156(3):647–61.e2

    Article  CAS  PubMed  Google Scholar 

  5. Kanno A, Satoh K, Hirota M et al (2010) Prediction of invasive carcinoma in branch type intraductal papillary mucinous neoplasms of the pancreas. J Gastroenterol. 45(9):952–959

    Article  PubMed  Google Scholar 

  6. Yamaguchi K, Ohuchida J, Ohtsuka T, Nakano K, Tanaka M (2002) Intraductal papillary-mucinous tumor of the pancreas concomitant with ductal carcinoma of the pancreas. Pancreatology. 2(5):484–490

    Article  PubMed  Google Scholar 

  7. Kamisawa T, Tu Y, Egawa N, Nakajima H, Tsuruta K, Okamoto A (2005) Malignancies associated with intraductal papillary mucinous neoplasm of the pancreas. World J Gastroenterol. 11(36):5688–5690

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kawakami S, Fukasawa M, Shimizu T et al (2019) Diffusion-weighted image improves detectability of magnetic resonance cholangiopancreatography for pancreatic ductal adenocarcinoma concomitant with intraductal papillary mucinous neoplasm. Medicine (Baltimore). 98(47):e18039

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yagi Y, Masuda A, Zen Y et al (2018) Pancreatic inflammation and atrophy are not associated with pancreatic cancer concomitant with intraductal papillary mucinous neoplasm. Pancreatology. 18(1):54–60

    Article  PubMed  Google Scholar 

  10. Kawada N, Uehara H, Nagata S, Tsuchishima M, Tsutsumi M, Tomita Y (2015) Imaging morphological changes of intraductal papillary mucinous neoplasm of the pancreas was associated with its malignant transformation but not with development of pancreatic ductal adenocarcinoma. Pancreatology. 15(6):654–660

    Article  CAS  PubMed  Google Scholar 

  11. Ikegawa T, Masuda A, Sakai A et al (2018) Multifocal cysts and incidence of pancreatic cancer concomitant with intraductal papillary mucinous neoplasm. Pancreatology. 18(4):399–406

    Article  PubMed  Google Scholar 

  12. Ingkakul T, Sadakari Y, Ienaga J, Satoh N, Takahata S, Tanaka M (2010) Predictors of the presence of concomitant invasive ductal carcinoma in intraductal papillary mucinous neoplasm of the pancreas. Ann Surg. 251(1):70–75

    Article  PubMed  Google Scholar 

  13. Kobayashi G, Fujita N, Maguchi H et al (2014) Natural history of branch duct intraductal papillary mucinous neoplasm with mural nodules: a Japan Pancreas Society multicenter study. Pancreas. 43(4):532–538

    Article  PubMed  PubMed Central  Google Scholar 

  14. Uehara H, Nakaizumi A, Ishikawa O et al (2008) Development of ductal carcinoma of the pancreas during follow-up of branch duct intraductal papillary mucinous neoplasm of the pancreas. Gut. 57(11):1561–1565

    Article  CAS  PubMed  Google Scholar 

  15. Tanaka M, Fernández-Del Castillo C, Kamisawa T et al (2017) Revisions of international consensus Fukuoka guidelines for the management of IPMN of the pancreas. Pancreatology. 17(5):738–753

    Article  PubMed  Google Scholar 

  16. Fukui H, Hori M, Fukuda Y et al (2019) Evaluation of fatty pancreas by proton density fat fraction using 3-T magnetic resonance imaging and its association with pancreatic cancer. Eur J Radiol. 118:25–31

    Article  PubMed  Google Scholar 

  17. Rebours V, Gaujoux S, d'Assignies G et al (2015) Obesity and fatty pancreatic infiltration are risk factors for pancreatic precancerous lesions (PanIN). Clin Cancer Res. 21(15):3522–3528

  18. Hori M, Takahashi M, Hiraoka N et al (2014) Association of pancreatic fatty infiltration with pancreatic ductal adenocarcinoma. Clin Transl Gastroenterol 5(3):e53-e

    Article  Google Scholar 

  19. Lesmana CRA, Gani RA, Lesmana LA (2018) Non-alcoholic fatty pancreas disease as a risk factor for pancreatic cancer based on endoscopic ultrasound examination among pancreatic cancer patients: a single-center experience. JGH Open. 2(1):4–7

    Article  PubMed  Google Scholar 

  20. Fukuda Y, Yamada D, Eguchi H et al (2017) CT Density in the pancreas is a promising imaging predictor for pancreatic ductal adenocarcinoma. Ann Surg Oncol. 24(9):2762–2769

    Article  PubMed  Google Scholar 

  21. Majumder S, Philip NA, Takahashi N, Levy MJ, Singh VP, Chari ST (2017) Fatty pancreas: should we be concerned? Pancreas. 46(10):1251–1258

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tomita Y, Azuma K, Nonaka Y et al (2014) Pancreatic fatty degeneration and fibrosis as predisposing factors for the development of pancreatic ductal adenocarcinoma. Pancreas. 43(7):1032–1041

    Article  PubMed  Google Scholar 

  23. Takahashi M, Hori M, Ishigamori R, Mutoh M, Imai T, Nakagama H (2018) Fatty pancreas: a possible risk factor for pancreatic cancer in animals and humans. Cancer Sci. 109(10):3013–3023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Murakami Y, Uemura K, Sudo T et al (2009) Invasive intraductal papillary-mucinous neoplasm of the pancreas: comparison with pancreatic ductal adenocarcinoma. J Surg Oncol. 100(1):13–18

    Article  PubMed  Google Scholar 

  25. Tanno S, Nakano Y, Koizumi K et al (2010) Pancreatic ductal adenocarcinomas in long-term follow-up patients with branch duct intraductal papillary mucinous neoplasms. Pancreas. 39(1):36–40

    Article  PubMed  Google Scholar 

  26. Ideno N, Ohtsuka T, Kono H et al (2013) Intraductal papillary mucinous neoplasms of the pancreas with distinct pancreatic ductal adenocarcinomas are frequently of gastric subtype. Ann Surg. 258(1):141–151

    Article  PubMed  Google Scholar 

  27. Beller E, Lorbeer R, Keeser D et al (2019) Hepatic fat is superior to BMI, visceral and pancreatic fat as a potential risk biomarker for neurodegenerative disease. Eur Radiol. 29(12):6662–6670

    Article  PubMed  Google Scholar 

  28. Kühn JP, Berthold F, Mayerle J et al (2015) Pancreatic steatosis demonstrated at mr imaging in the general population: clinical relevance. Radiology. 276(1):129–136

    Article  PubMed  Google Scholar 

  29. Kromrey ML, Friedrich N, Hoffmann RT et al (2019) Pancreatic steatosis is associated with impaired exocrine pancreatic function. Invest Radiol. 54(7):403–408

    Article  CAS  PubMed  Google Scholar 

  30. Aliyari Ghasabeh M, Shaghaghi M, Khoshpouri P et al (2020) Correlation between incidental fat deposition in the liver and pancreas in asymptomatic individuals. Abdom Radiol (NY). 45(1):203–210

    Article  PubMed  Google Scholar 

  31. Lesmana CR, Pakasi LS, Inggriani S, Aidawati ML, Lesmana LA (2015) Prevalence of non-alcoholic fatty pancreas disease (NAFPD) and its risk factors among adult medical check-up patients in a private hospital: a large cross sectional study. BMC Gastroenterol. 15:174

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang Y, Wang C, Duanmu Y et al (2018) Comparison of CT and magnetic resonance mDIXON-Quant sequence in the diagnosis of mild hepatic steatosis. Br J Radiol. 91(1091):20170587

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lee SS, Park SH (2014) Radiologic evaluation of nonalcoholic fatty liver disease. World J Gastroenterol. 20(23):7392–7402

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yokoo T, Bydder M, Hamilton G et al (2009) Nonalcoholic fatty liver disease: diagnostic and fat-grading accuracy of low-flip-angle multiecho gradient-recalled-echo MR imaging at 1.5 T. Radiology. 251(1):67–76

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hayashi T, Fukuzawa K, Yamazaki H et al (2018) Multicenter, multivendor phantom study to validate proton density fat fraction and T2* values calculated using vendor-provided 6-point DIXON methods. Clin Imaging. 51:38–42

    Article  PubMed  Google Scholar 

  36. Serai SD, Dillman JR, Trout AT (2017) Proton density fat fraction measurements at 1.5- and 3-T hepatic MR imaging: same-day agreement among readers and across two imager manufacturers. Radiology. 284(1):244–254

    Article  PubMed  Google Scholar 

Download references

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidemitsu Sotozono.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Tsutomu Tamada.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors has significant statistical expertise.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• retrospective

• observational

• performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotozono, H., Kanki, A., Yasokawa, K. et al. Value of 3-T MR imaging in intraductal papillary mucinous neoplasm with a concomitant invasive carcinoma. Eur Radiol 32, 8276–8284 (2022). https://doi.org/10.1007/s00330-022-08881-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-022-08881-6

Keywords

Navigation