Skip to main content

Advertisement

Log in

Role of tissue markers associated with tumor microenvironment in the progression and immune suppression of oral squamous cell carcinoma

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Head and neck cancers (HNC) continues to dominate major cancers contributing to  mortality worldwide. Squamous cell carcinoma is the major type of HNC. Oral Squamous Cell Carcinoma grouped under HNC is a malignant tumor occurring in the oral cavity. The primary risk factors of OSCC are tobacco, alcohol consumption, etc. This review focuses on modulations, mechanisms, growth and differentiation of oral squamous cell carcinoma. Cancer cell surrounds itself with a group of elements forming a favorable environment known as tumor microenvironment (TME). It consists of numerous cells which includes immune cells, blood cells and acellular components that are responsible for the progression, immunosuppression, metastasis and angiogenesis of cancer. This review highlights the most important tissue biomarkers (mTOR, CAF, FOXp3, CD163, CD33, CD34) that are associated with TME cells. mTOR remains as the primary regulator responsible in cancer and its importance towards immune-suppression is highlighted. Tumor-associated macrophages associated with cancer development and its relationship with immunomodulatory mechanism and Tregs, which are potential blockers of immune response and its mechanism and aberrations are discussed. Cancer-associated fibroblasts that are a part of TME and their role in evading the immune response and myeloid derived suppressor cells that have slight control over the immune response and their mechanism in the tumor progression is further explained. These markers have been emphasised as therapeutic targets and are currently in different stages of clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

HNC:

Head and neck cancer

EGFR:

Epidermal growth factor receptor

VEGF:

Vascular endothelial growth factor

OSCC:

Oral squamous cell carcinoma

HPV:

Human papilloma virus

TME:

Tumor microenvironment

ECM:

Extracellular matrix

mTOR:

Mammalian target of rapamycin

mTORC1 & 2:

Mammalian target of rapamycin complex 1 & 2

MDSCs:

Myeloid-derived suppressor cells

HSC:

Hematopoietic stem cells

TAM:

Tumor-associated macrophages

FOXp3::

Forkhead Box p3

Tregs:

Regulatory T cells

CAF:

Cancer-associated fibroblasts

RTK:

Receptor tyrosine kinase

GPCR:

G-protein coupled receptor

PIP2 & 3:

Phosphatidylinositol P 2 & 3

AKT:

Protein kinase B

PTEN:

Phosphatase and tensin

Rheb:

RAS homolog enriched in brain

TSC1 & 2:

Tuberous sclerosis protein 1 & 2

RAPTOR:

Regulatory associated protein of mTOR

TH :

T helper cells

DC:

Dendritic cells

NK:

Natural killer cells

APC:

Antigen presenting cells

IL:

Interleukin

TGF-β:

Tumor growth factor-β

MAPK:

Mitogen activated protein kinase

PDL1:

Programmed death ligand-1

PKD 3:

Protein kinase D3

LLSCC:

Lower lip squamous cell carcinoma

CXCL12:

CXC motif chemokine ligand 12

myCAF:

Myofibroblasts CAF

iCAF:

Inflammatory CAF

apCAF:

Antigen presenting CAF

EMT:

Epithelial mesenchymal transition

References

  1. Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 2020. https://doi.org/10.1038/s41572-020-00224-3.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gormley M, Creaney G, Schache A, Ingarfield K, Conway DI. Reviewing the epidemiology of head and neck cancer: definitions, trends and risk factors. Br Dent J. 2022;233(9):780–6. https://doi.org/10.1038/s41415-022-5166-x.

    Article  PubMed  PubMed Central  Google Scholar 

  3. UMDECDE Los. Cancer.net. Head and neck cancer accounts, and neck cancer in 2020. https://www.cancer.net/cancer-types/head-and-neck-cancer/statistics.

  4. Patterson RH, et al. Global burden of head and neck cancer: economic consequences, health, and the role of surgery. Otolaryngol Head Neck Surg. 2020;162(3):296–303. https://doi.org/10.1177/0194599819897265.

    Article  PubMed  Google Scholar 

  5. Kennel T, Garrel R, Costes V, Boisselier P, Crampette L, Favier V. Head and neck carcinoma of unknown primary. Eur Ann Otorhinolaryngol Head Neck Dis. 2019;136(3):185–92. https://doi.org/10.1016/j.anorl.2019.04.002.

    Article  CAS  PubMed  Google Scholar 

  6. Diering D, Dowd EC, Frank MJ, Collins A, Goldd JM, Barch DM. Head and neck cancer. Physiol Behav. 2017;176(12):139–48. https://doi.org/10.1016/S0140-6736(08)60728-X.Head.

    Article  Google Scholar 

  7. Szyfter K. Genetics and molecular biology of head and neck cancer. Biomolecules. 2021;11(9):10–1. https://doi.org/10.3390/biom11091293.

    Article  CAS  Google Scholar 

  8. Wipt P, George KM. The molecular pathogenesis of head and neck cancer. Bone. 2008;23(1):1–7.

    Google Scholar 

  9. Mody MD, Rocco JW, Yom SS, Haddad RI, Saba NF. Head and neck cancer. Lancet. 2021;398(10318):2289–99. https://doi.org/10.1016/S0140-6736(21)01550-6.

    Article  PubMed  Google Scholar 

  10. Marur S, Forastiere AA. Head and neck squamous cell carcinoma: update on epidemiology, diagnosis, and treatment. Mayo Clin Proc. 2016;91(3):386–96. https://doi.org/10.1016/j.mayocp.2015.12.017.

    Article  PubMed  Google Scholar 

  11. Chamoli A, et al. Overview of oral cavity squamous cell carcinoma: risk factors, mechanisms, and diagnostics. Oral Oncol. 2021;121:105451. https://doi.org/10.1016/j.oraloncology.2021.105451.

    Article  PubMed  Google Scholar 

  12. Venugopal R, Bavle RM, Konda P, Muniswamappa S, Makarla S. Familial cancers of head and neck region. J Clin Diagn Res. 2017;11(6):1–6. https://doi.org/10.7860/JCDR/2017/25920.9967.

    Article  Google Scholar 

  13. Zhang Y, He J, He B, Huang R, Li M. Effect of tobacco on periodontal disease and oral cancer. Tob Induc Dis. 2019;17:1–15. https://doi.org/10.18332/tid/106187.

    Article  CAS  Google Scholar 

  14. Santacroce L, et al. Focus on hpv infection and the molecular mechanisms of oral carcinogenesis. Viruses. 2021;13(4):1–11. https://doi.org/10.3390/v13040559.

    Article  CAS  Google Scholar 

  15. Blatt S, et al. Biomarkers in diagnosis and therapy of oral squamous cell carcinoma: a review of the literature. J Cranio-Maxillofac Surg. 2017;45(5):722–30. https://doi.org/10.1016/j.jcms.2017.01.033.

    Article  Google Scholar 

  16. Vivek R. Role of ayurveda in dental practice. Am J Oral Med Radiol. 2015;2(4):246–8.

    Google Scholar 

  17. Spill F, Reynolds DS, Kamm RD, Zaman MH. Impact of the physical microenvironment on tumor progression and metastasis. Curr Opin Biotechnol. 2016;40:41–8. https://doi.org/10.1016/j.copbio.2016.02.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lebleu VS. Imaging the tumor microenvironment. Cancer J. 2015;21(3):174–8. https://doi.org/10.1097/PPO.0000000000000118.

    Article  PubMed  PubMed Central  Google Scholar 

  19. de Visser KE, Joyce JA. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell. 2023;41(3):374–403. https://doi.org/10.1016/j.ccell.2023.02.016.

    Article  CAS  PubMed  Google Scholar 

  20. Wang G, et al. Tumor microenvironment in head and neck squamous cell carcinoma: functions and regulatory mechanisms. Cancer Lett. 2021;507(2021):55–69. https://doi.org/10.1016/j.canlet.2021.03.009.

    Article  CAS  PubMed  Google Scholar 

  21. Arneth B. Tumor microenvironment. Medicina. 2019;56:1. https://doi.org/10.3390/medicina56010015.

    Article  Google Scholar 

  22. Huang S. mTOR signaling in metabolism and cancer. Cells. 2020;9(10):2–5. https://doi.org/10.3390/cells9102278.

    Article  CAS  Google Scholar 

  23. Moaaz M, Lotfy H, Elsherbini B, Motawea MA, Fadali G. TGF-p enhances the anti-inflammatory effect of tumor-infiltrating CD33+11b+HLA-DR myeloid-derived suppressor cells in gastric cancer: a possible relation to microRNA-494. Asian Pac J Cancer Prev. 2020;21(11):3393–403. https://doi.org/10.31557/APJCP.2020.21.11.3393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Calegari F, Waskow C. CD34—structure, functions and relationship with cancer stem cells. Princ Regen Med. 2013;2:109–13. https://doi.org/10.1016/B978-0-12-809880-6.00008-4.

    Article  Google Scholar 

  25. Ma S, et al. CD163 as a potential biomarker in colorectal cancer for tumor microenvironment and cancer prognosis: a Swedish study from tissue microarrays to big data analyses. Cancers. 2022;14(24):1–15. https://doi.org/10.3390/cancers14246166.

    Article  CAS  Google Scholar 

  26. Jia H, et al. The expression of FOXP3 and its role in human cancers. Biochim Biophys Acta Rev Cancer. 2019;1871(1):170–8. https://doi.org/10.1016/j.bbcan.2018.12.004.

    Article  CAS  PubMed  Google Scholar 

  27. Tao L, Huang G, Song H, Chen Y, Chen L. Cancer associated fibroblasts: an essential role in the tumor microenvironment (review). Oncol Lett. 2017;14(3):2611–20. https://doi.org/10.3892/ol.2017.6497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Conciatori F, et al. Role of mTOR signaling in tumor microenvironment: an overview. Int J Mol Sci. 2018;19(8):1–19. https://doi.org/10.3390/ijms19082453.

    Article  CAS  Google Scholar 

  29. Tian T, Li X, Zhang J. mTOR signaling in cancer and mtor inhibitors in solid tumor targeting therapy. Int J Mol Sci. 2019;20(3):1–34. https://doi.org/10.3390/ijms20030755.

    Article  CAS  Google Scholar 

  30. Harachi M, Masui K, Okamura Y, Tsukui R, Mischel PS, Shibata N. mTOR complexes as a nutrient sensor for driving cancer progression. Int J Mol Sci. 2018;19:10. https://doi.org/10.3390/ijms19103267.

    Article  CAS  Google Scholar 

  31. Lui VWY, et al. Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers. Cancer Discov. 2013;3(7):761–9. https://doi.org/10.1158/2159-8290.CD-13-0103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Umemura S, et al. Therapeutic priority of the PI3K/AKT/mTOR pathway in small cell lung cancers as revealed by a comprehensive genomic analysis. J Thorac Oncol. 2014;9(9):1324–31. https://doi.org/10.1097/JTO.0000000000000250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee JH, Kang KW, Lee HW. Expression of phosphorylated mTOR and its clinical significances in small cell lung cancer. Int J Clin Exp Pathol. 2015;8(3):2987–93.

    PubMed  PubMed Central  Google Scholar 

  34. Cooper WA, Lam DCL, O’Toole SA, Minna JD. Molecular biology of lung cancer. J Thorac Dis. 2013;5(Suppl 5):S479–90. https://doi.org/10.3978/j.issn.2072-1439.2013.08.03.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Riquelme I, et al. The gene expression status of the PI3K/AKT/mTOR pathway in gastric cancer tissues and cell lines. Pathol Oncol Res. 2016;22(4):797–805. https://doi.org/10.1007/s12253-016-0066-5.

    Article  CAS  PubMed  Google Scholar 

  36. De Roock W, De Vriendt V, Normanno N, Ciardiello F, Tejpar S. KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer. Lancet Oncol. 2011;12(6):594–603. https://doi.org/10.1016/S1470-2045(10)70209-6.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang J, Roberts TM, Shivdasani RA. Targeting PI3K signaling as a therapeutic approach for colorectal cancer. Gastroenterology. 2011;141(1):50–61. https://doi.org/10.1053/j.gastro.2011.05.010.

    Article  CAS  PubMed  Google Scholar 

  38. Sun M, et al. AKT1/PKBalpha kinase is frequently elevated in human cancers and its constitutive activation is required for oncogenic transformation in NIH3T3 cells. Am J Pathol. 2001;159(2):431–7. https://doi.org/10.1016/s0002-9440(10)61714-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lawrence MS, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505(7484):495–501. https://doi.org/10.1038/nature12912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Audenet F, Attalla K, Sfakianos JP. The evolution of bladder cancer genomics: what have we learned and how can we use it? Urol Oncol. 2018;36(7):313–20. https://doi.org/10.1016/j.urolonc.2018.02.017.

    Article  CAS  PubMed  Google Scholar 

  41. Houédé N, Pourquier P. Targeting the genetic alterations of the PI3K-AKT-mTOR pathway: its potential use in the treatment of bladder cancers. Pharmacol Ther. 2015;145:1–18. https://doi.org/10.1016/j.pharmthera.2014.06.004.

    Article  CAS  PubMed  Google Scholar 

  42. Morgan TM, Koreckij TD, Corey E. Targeted therapy for advanced prostate cancer: inhibition of the PI3K/Akt/mTOR pathway. Curr Cancer Drug Targets. 2009;9(2):237–49. https://doi.org/10.2174/156800909787580999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Whiteside TL. Regulatory T cell subsets in human cancer: are they regulating for or against tumor progression? Cancer Immunol Immunother. 2014;63(1):67–72. https://doi.org/10.1007/s00262-013-1490-y.

    Article  CAS  PubMed  Google Scholar 

  44. Mafi S, et al. mTOR-mediated regulation of immune responses in cancer and tumor microenvironment. Front Immunol. 2022;12:1–19. https://doi.org/10.3389/fimmu.2021.774103.

    Article  CAS  Google Scholar 

  45. Thomson AW, Turnquist HR, Raimondi G. Immunoregulatory functions of mTOR inhibition. Nat Rev Immunol. 2009;9(5):324–37. https://doi.org/10.1038/nri2546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang K, et al. Metabolic signaling directs the reciprocal lineage decisions of and T cells. Sci Immunol. 2018;3(25):1–13. https://doi.org/10.1126/sciimmunol.aas9818.

    Article  CAS  Google Scholar 

  47. Delgoffe GM, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol. 2011;12(4):295–303. https://doi.org/10.1038/ni.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee K, et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity. 2010;32(6):743–53. https://doi.org/10.1016/j.immuni.2010.06.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang F, et al. Crosstalks between mTORC1 and mTORC2 variagate cytokine signaling to control NK maturation and effector function. Nat Commun. 2018;9(1):1–17. https://doi.org/10.1038/s41467-018-07277-9.

    Article  CAS  Google Scholar 

  50. Chen YL, et al. mTOR inhibitors can enhance the anti-tumor effects of DNA vaccines through modulating dendritic cell function in the tumor microenvironment. Cancers. 2019;11:5. https://doi.org/10.3390/cancers11050617.

    Article  CAS  Google Scholar 

  51. Vander Broek R, Mohan S, Eytan DF, Chen Z, Van Waes C. The PI3K/Akt/mTOR axis in head and neck cancer: functions, aberrations, cross-talk, and therapies. Oral Dis. 2015;21(7):815–25. https://doi.org/10.1111/odi.12206.

    Article  CAS  PubMed  Google Scholar 

  52. Marques AEM, et al. mTOR pathway protein immunoexpression as a prognostic factor for survival in head and neck cancer patients: a systematic review and meta-analysis. J Oral Pathol Med. 2016;45(5):319–28. https://doi.org/10.1111/jop.12390.

    Article  CAS  PubMed  Google Scholar 

  53. Harsha C, Banik K, Ang HL, Girisa S, Vikkurthi R. Targeting AKT/mTOR in oral cancer. Mech Adv Clin Trials. 2022;1:1–26.

    Google Scholar 

  54. Ferreira DM, Neves TJ, Lima LGCA, Alves FA, Begnami MD. Prognostic implications of the phosphatidylinositol 3-kinase/Akt signaling pathway in oral squamous cell carcinoma: overexpression of p-mTOR indicates an adverse prognosis. Appl Cancer Res. 2017;37(1):1–8. https://doi.org/10.1186/s41241-017-0046-4.

    Article  Google Scholar 

  55. Lakshminarayana S, et al. Molecular pathways of oral cancer that predict prognosis and survival: a systematic review. J Carcinog. 2019;17(1):1–12. https://doi.org/10.4103/jcar.JCar_17_18.

    Article  Google Scholar 

  56. Chen D, Zhang X, Li Z, Zhu B. Metabolic regulatory crosstalk between tumor microenvironment and tumor-associated macrophages. Theranostics. 2020;11(3):1016–30. https://doi.org/10.7150/THNO.51777.

    Article  Google Scholar 

  57. Anupama Mukherjee AD, Spadigam A. Tumor-associated macrophages: Harbingers of aggressiveness in oral squamous cell carcinoma. J Oral Maxillofac Pathol. 2021;21(3):244–51. https://doi.org/10.4103/jomfp.JOMFP.

    Article  Google Scholar 

  58. Xue Y, Song X, Fan S, Deng R. The role of tumor-associated macrophages in oral squamous cell carcinoma. Front Physiol. 2022;13:1–8. https://doi.org/10.3389/fphys.2022.959747.

    Article  Google Scholar 

  59. Suárez-Sánchez FJ, Lequerica-Fernández P, Suárez-Canto J, Rodrigo JP, Rodriguez-Santamarta T, Domínguez-Iglesias F, García-Pedrero JM, de Vicente JC. Macrophages in oral carcinomas: relationship with cancer stem cell markers and PD-L1 expression. Cancers. 2020;12(7):1764.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chen W, Xiao M, Zhang J, Chen W. M1-like tumor-associated macrophages activated by exosome-transferred THBS1 promote malignant migration in oral squamous cell carcinoma. J Exp Clin Cancer Res. 2018;37(1):1–15. https://doi.org/10.1186/s13046-018-0815-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cui B, et al. Protein kinase D3 regulates the expression of the immunosuppressive protein, PD-L1, through STAT1/STAT3 signaling. Int J Oncol. 2020;56(4):909–20. https://doi.org/10.3892/ijo.2020.4974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Aggarwal S, Sharma SC, Das SN. Dynamics of regulatory T cells (Tregs) in patients with oral squamous cell carcinoma. J Surg Oncol. 2017;116(8):1103–13. https://doi.org/10.1002/jso.24782.

    Article  CAS  PubMed  Google Scholar 

  63. da Cunha Filho FAP, et al. Immunohistochemical analysis of FoxP3+ regulatory T cells in lower lip squamous cell carcinomas. Braz Oral Res. 2016;30(1):1–8. https://doi.org/10.1590/1807-3107BOR-2016.VOL30.0130.

    Article  Google Scholar 

  64. Norouzian M, Mehdipour F, Ashraf MJ, Khademi B, Ghaderi A. Regulatory and effector T cell subsets in tumor-draining lymph nodes of patients with squamous cell carcinoma of head and neck. BMC Immunol. 2022;23(1):1–19. https://doi.org/10.1186/s12865-022-00530-3.

    Article  CAS  Google Scholar 

  65. Zhou X, Su YX, Lao XM, Liang YJ, Liao GQ. CD19+IL-10+ regulatory B cells affect survival of tongue squamous cell carcinoma patients and induce resting CD4+ T cells to CD4+Foxp3+ regulatory T cells. Oral Oncol. 2016;53(2016):27–35. https://doi.org/10.1016/j.oraloncology.2015.11.003.

    Article  CAS  PubMed  Google Scholar 

  66. Koike K, et al. Prognostic value of FoxP3 and CTLA-4 expression in patients with oral squamous cell carcinoma. PLoS ONE. 2020;15(8):1–17. https://doi.org/10.1371/journal.pone.0237465.

    Article  CAS  Google Scholar 

  67. Schipmann S, Wermker K, Schulze HJ, Kleinheinz J, Brunner G. Cutaneous and oral squamous cell carcinoma-dual immunosuppression via recruitment of FOXP3+ regulatory T cells and endogenous tumour FOXP3 expression? J Cranio-Maxillofac Surg. 2014;42(8):1827–33. https://doi.org/10.1016/j.jcms.2014.06.022.

    Article  Google Scholar 

  68. Zhang B, et al. CXCL12 is associated with FoxP3+ tumor-infiltrating lymphocytes and affects the survival of patients with oral squamous cell carcinoma. Oncol Lett. 2019;18(2):1099–106. https://doi.org/10.3892/ol.2019.10415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Attias M, Al-Aubodah T, Piccirillo CA. Mechanisms of human FoxP3+ Treg cell development and function in health and disease. Clin Exp Immunol. 2019;197(1):36–51. https://doi.org/10.1111/cei.13290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ziani L, Chouaib S, Thiery J. Alteration of the antitumor immune response by cancer-associated fibroblasts. Front Immunol. 2018. https://doi.org/10.3389/fimmu.2018.00414.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hu C, Zhang Y, Wu C, Huang Q. Heterogeneity of cancer-associated fibroblasts in head and neck squamous cell carcinoma: opportunities and challenges. Cell Death Discov. 2023;9(1):1–10. https://doi.org/10.1038/s41420-023-01428-8.

    Article  CAS  Google Scholar 

  72. Knops AM, et al. Cancer-associated fibroblast density, prognostic characteristics, and recurrence in head and neck squamous cell carcinoma: a meta-analysis. Front Oncol. 2020;10:1–11. https://doi.org/10.3389/fonc.2020.565306.

    Article  Google Scholar 

  73. Takahashi H, et al. Cancer-associated fibroblasts promote an immunosuppressive microenvironment through the induction and accumulation of protumoral macrophages. Oncotarget. 2017;8(5):8633–47. https://doi.org/10.18632/oncotarget.14374.

    Article  PubMed  Google Scholar 

  74. Bienkowska KJ, Hanley CJ, Thomas GJ. Cancer-associated fibroblasts in oral cancer: a current perspective on function and potential for therapeutic targeting. Front Oral Health. 2021;2:1–11. https://doi.org/10.3389/froh.2021.686337.

    Article  Google Scholar 

  75. Takahashi H, et al. Immunosuppressive activity of cancer-associated fibroblasts in head and neck squamous cell carcinoma. Cancer Immunol Immunother. 2015;64(11):1407–17. https://doi.org/10.1007/s00262-015-1742-0.

    Article  CAS  PubMed  Google Scholar 

  76. Wu F, et al. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther. 2021;6(1):1–35. https://doi.org/10.1038/s41392-021-00641-0.

    Article  CAS  Google Scholar 

  77. Kouketsu A, et al. Myeloid-derived suppressor cells and plasmacytoid dendritic cells are associated with oncogenesis of oral squamous cell carcinoma. J Oral Pathol Med. 2023;52(1):9–19. https://doi.org/10.1111/jop.13386.

    Article  CAS  PubMed  Google Scholar 

  78. Pang X, et al. Myeloid derived suppressor cells contribute to the malignant progression of oral squamous cell carcinoma. PLoS ONE. 2020;15(2):e0229089. https://doi.org/10.1371/journal.pone.0229089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nagatsuka H, et al. Various immunostaining patterns of CD31, CD34 and endoglin and their relationship with lymph node metastasis in oral squamous cell carcinomas. J Oral Pathol Med. 2005;34(2):70–6. https://doi.org/10.1111/j.1600-0714.2004.00227.x.

    Article  PubMed  Google Scholar 

  80. Shahsavari F, Farhadi S, Sadri D, Sedehi M. Evaluation of microvascularity by CD34 expression in esophagus and oral squamous cell carcinoma. J Contemp Dent Pract. 2015;16(6):458–62. https://doi.org/10.5005/jp-journals-10024-1706.

    Article  PubMed  Google Scholar 

  81. Chu M, et al. Myeloid-derived suppressor cells contribute to oral cancer progression in 4NQO-treated mice. Oral Dis. 2012;18(1):67–73. https://doi.org/10.1111/j.1601-0825.2011.01846.x.

    Article  CAS  PubMed  Google Scholar 

  82. Harsha C, et al. Targeting AKT/mTOR in oral cancer: mechanisms and advances in clinical trials. Int J Mol Sci. 2020;21:9. https://doi.org/10.3390/ijms21093285.

    Article  CAS  Google Scholar 

  83. Xiang X, Wang J, Lu D, Xu X. Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct Target Ther. 2021;6(1):75. https://doi.org/10.1038/s41392-021-00484-9.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sharma A, Rudra D. Regulatory T cells as therapeutic targets and mediators. Int Rev Immunol. 2019;38(5):183–203. https://doi.org/10.1080/08830185.2019.1621310.

    Article  CAS  PubMed  Google Scholar 

  85. Salimifard S, et al. Cancer associated fibroblasts as novel promising therapeutic targets in breast cancer. Pathol Res Pract. 2020;216(5):152915. https://doi.org/10.1016/j.prp.2020.152915.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

No funding was received for this review.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Harikrishnan Thamizhchelvan or Venkatachalam Deepa Parvathi.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramalingam, S., Shantha, S., Muralitharan, S. et al. Role of tissue markers associated with tumor microenvironment in the progression and immune suppression of oral squamous cell carcinoma. Med Oncol 40, 303 (2023). https://doi.org/10.1007/s12032-023-02169-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02169-5

Keywords

Navigation