Skip to main content

Advertisement

Log in

Regulatory T cell subsets in human cancer: are they regulating for or against tumor progression?

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Regulatory T cells (Treg) play a key role in maintaining the balance of immune responses in human health and in disease. Treg come in many flavors and can utilize a variety of mechanisms to modulate immune responses. In cancer, inducible (i) or adaptive Treg expand, accumulate in tissues and the peripheral blood of patients, and represent a functionally prominent component of CD4+ T lymphocytes. Phenotypically and functionally, iTreg are distinct from natural (n) Treg. A subset of iTreg expressing ectonucleotidases, CD39 and CD73, is able to hydrolyze ATP to 5′-AMP and adenosine (ADO) and thus mediate suppression of those immune cells which express ADO receptors. iTeg can also produce prostaglandin E2 (PGE2). These iTreg, expanding in response to tumor antigens and cytokines such as TGF-β or IL-10, are presumably responsible for the suppression of anti-tumor immune responses and for successful tumor escape. On the other hand, in cancers associated with prominent inflammatory infiltrates, e.g., colorectal carcinoma or certain types of breast cancer, iTreg down-regulate excessive inflammation by producing ADO and/or PGE2 and protect the host from tissue injury and tumor development. Thus, iTreg utilizing the same adenosine pathway play a key but dual role in cancer, and their plasticity is controlled and driven by the microenvironment. Thus, monitoring for the frequency and functions of iTreg rather than nTreg is important in cancer. In addition, elimination of iTreg by various available strategies prior to immunotherapies may not be beneficial in all cases and needs to be undertaken with caution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duhen T, Duhen R, Lanzavecchia A, Sallusto F, Campbell DJ (2012) Functionally distinct subsets of human FOXP3+ Treg cells that phenotypically mirror effector Th cells. Blood 119:4430–4440. doi:10.1182/blood-2011-11-392324

    Article  CAS  PubMed  Google Scholar 

  2. Asano M, Toda M, Sakaguchi N, Sakaguchi S (1996) Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med 184:387–396

    Article  CAS  PubMed  Google Scholar 

  3. Mougiakakos D, Choudhury A, Lladser A, Kiessling R, Johansson CC (2010) Regulatory T cells in cancer. Adv Cancer Res 107:57–117. doi:10.1016/S0065-230X(10)07003-X

    CAS  PubMed  Google Scholar 

  4. Jenabian MA, Seddiki N, Yatim A et al (2013) Regulatory T cells negatively affect IL-2 production of effector T cells through CD39/adenosine pathway in HIV infection. PLoS Pathog 9:e1003319. doi:10.1371/journal.ppat.1003319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Nishikawa H, Sakaguchi S (2010) Regulatory T cells in tumor immunity. Int J Cancer 127:759–767. doi:10.1002/ijc.25429

    CAS  PubMed  Google Scholar 

  6. Strauss L, Bergmann C, Gooding W, Johnson JT, Whiteside TL (2007) The frequency and suppressor function of CD4+ CD25highFoxp3+ T cells in the circulation of patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 13:6301–6311. doi:10.1158/1078-0432.CCR-07-1403

    Article  CAS  PubMed  Google Scholar 

  7. deLeeuw RJ, Kost SE, Kakal JA, Nelson BH (2012) The prognostic value of FoxP3+ tumor-infiltrating lymphocytes in cancer: a critical review of the literature. Clin Cancer Res 18:3022–3029. doi:10.1158/1078-0432.CCR-11-3216

    Article  CAS  PubMed  Google Scholar 

  8. Curiel TJ, Coukos G, Zou L et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949. doi:10.1038/nm1093

    Article  CAS  PubMed  Google Scholar 

  9. Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D, Platell C, Iacopetta B (2009) Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Ooncol 27:186–192. doi:10.1200/JCO.2008.18.7229

    Article  Google Scholar 

  10. Whiteside TL (2008) The tumor microenvironment and its role in promoting tumor growth. Oncogene 27:5904–5912. doi:10.1038/onc.2008.271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kelley TW, Parker CJ (2010) CD4 (+)CD25 (+)Foxp3 (+) regulatory T cells and hematologic malignancies. Front Biosci 2:980–992

    Article  Google Scholar 

  12. Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL, Banham AH (2006) Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 24:5373–5380. doi:10.1200/JCO.2006.05.9584

    Article  PubMed  Google Scholar 

  13. Fridman WH, Galon J, Pages F, Tartour E, Sautes-Fridman C, Kroemer G (2011) Prognostic and predictive impact of intra- and peritumoral immune infiltrates. Cancer Res 71:5601–5605. doi:10.1158/0008-5472

    Article  CAS  PubMed  Google Scholar 

  14. Tosolini M, Kirilovsky A, Mlecnik B et al (2011) Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, Th2, Treg, Th17) in patients with colorectal cancer. Cancer Res 71:1263–1271. doi:10.1158/0008-5472.CAN-10-2907

    Article  CAS  PubMed  Google Scholar 

  15. Delgoffe GM, Woo SR, Turnis ME et al (2013) Stability and function of regulatory T cells is maintained by a neuropilin-1-semaphorin-4a axis. Nature 501:252–256. doi:10.1038/nature12428

    Article  CAS  PubMed  Google Scholar 

  16. Tel J, Smits EL, Anguille S, Joshi RN, Figdor CG, de Vries IJ (2012) Human plasmacytoid dendritic cells are equipped with antigen-presenting and tumoricidal capacities. Blood 120:3936–3944. doi:10.1182/blood-2012-06-435941

    Article  CAS  PubMed  Google Scholar 

  17. Borsellino G, Kleinewietfeld M, Di Mitri D et al (2007) Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110:1225–1232. doi:10.1182/blood-2006-12-064527

    Article  CAS  PubMed  Google Scholar 

  18. Deaglio S, Dwyer KM, Gao W et al (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204:1257–1265. doi:10.1084/jem.20062512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Mandapathil M, Hilldorfer B, Szczepanski MJ et al (2010) Generation and accumulation of immunosuppressive adenosine by human CD4+ CD25highFOXP3+ regulatory T cells. J Biol Chem 285:7176–7186. doi:10.1074/jbc.M109.047423

    Article  CAS  PubMed  Google Scholar 

  20. Bergmann C, Strauss L, Zeidler R, Lang S, Whiteside TL (2007) Expansion and characteristics of human T regulatory type 1 cells in co-cultures simulating tumor microenvironment. Cancer Immunol Immunother 56:1429–1442. doi:10.1007/s00262-007-0280-9

    Article  PubMed  Google Scholar 

  21. Roncarolo MG, Bacchetta R, Bordignon C, Narula S, Levings MK (2001) Type 1 T regulatory cells. Immunol Rev 182:68–79

    Article  CAS  PubMed  Google Scholar 

  22. Saze Z, Schuler PJ, Hong CS, Cheng D, Jackson EK, Whiteside TL (2013) Adenosine production by human B cells and B cell-mediated suppression of activated T cells. Blood 122:9–18. doi:10.1182/blood-2013-02-482406

    Article  CAS  PubMed  Google Scholar 

  23. Curotto de Lafaille MA, Lafaille JJ (2009) Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30:626–635. doi:10.1016/j.immuni.2009.05.002

    Article  CAS  PubMed  Google Scholar 

  24. Campbell DJ, Koch MA (2011) Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat Rev Immunol 11:119–130. doi:10.1038/nri2916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Hall BM, Verma ND, Tran GT, Hodgkinson SJ (2011) Distinct regulatory CD4+ T cell subsets; differences between naive and antigen specific T regulatory cells. Curr Opin Immunol 23:641–647. doi:10.1016/j.coi.2011.07.012

    Article  CAS  PubMed  Google Scholar 

  26. Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8:523–532. doi:10.1038/nri2343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Whiteside TL, Schuler P, Schilling B (2012) Induced and natural regulatory T cells in human cancer. Expert Opin Biol Ther 12:1383–1397. doi:10.1517/14712598.2012.707184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Bergmann C, Strauss L, Wang Y, Szczepanski MJ, Lang S, Johnson JT, Whiteside TL (2008) T regulatory type 1 cells in squamous cell carcinoma of the head and neck: mechanisms of suppression and expansion in advanced disease. Clin Cancer Res 14:3706–3715. doi:10.1158/1078-0432.CCR-07-5126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Rittiner JE, Korboukh I, Hull-Ryde EA, Jin J, Janzen WP, Frye SV, Zylka MJ (2012) AMP is an adenosine A1 receptor agonist. J Biol Chem 287:5301–5309. doi:10.1074/jbc.M111.291666

    Article  CAS  PubMed  Google Scholar 

  30. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM (2003) Conversion of peripheral CD4+ CD25− naive T cells to CD4+ CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198:1875–1886. doi:10.1084/jem.20030152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5:263–274. doi:10.1038/nrc1586

    Article  CAS  PubMed  Google Scholar 

  32. Whiteside TL (2013) Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). Biochem Soc Trans 41:245–251. doi:10.1042/BST20120265

    Article  CAS  PubMed  Google Scholar 

  33. Yan M, Jene N, Byrne D et al (2011) Recruitment of regulatory T cells is correlated with hypoxia-induced CXCR4 expression, and is associated with poor prognosis in basal-like breast cancers. Breast Cancer Res 13:R47. doi:10.1186/bcr2869

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Popple A, Durrant LG, Spendlove I, Rolland P, Scott IV, Deen S, Ramage JM (2012) The chemokine, CXCL12, is an independent predictor of poor survival in ovarian cancer. Br J Cancer 106:1306–1313. doi:10.1038/bjc.2012.49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Chung DJ, Rossi M, Romano E, Ghith J, Yuan J, Munn DH, Young JW (2009) Indoleamine 2,3-dioxygenase-expressing mature human monocyte-derived dendritic cells expand potent autologous regulatory T cells. Blood 114:555–563. doi:10.1182/blood-2008-11-191197

    Article  CAS  PubMed  Google Scholar 

  36. Fallarino F, Grohmann U, Hwang KW et al (2003) Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 4:1206–1212. doi:10.1038/ni1003

    Article  CAS  PubMed  Google Scholar 

  37. Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D, Mellor AL (2005) GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22:633–642. doi:10.1016/j.immuni.2005.03.013

    Article  CAS  PubMed  Google Scholar 

  38. Wang D, DuBois RN (2013) The role of anti-inflammatory drugs in colorectal cancer. Ann Rev Med 64:131–144. doi:10.1146/annurev-med-112211-154330

    Article  CAS  PubMed  Google Scholar 

  39. Mandapathil M, Szczepanski MJ, Szajnik M, Ren J, Jackson EK, Johnson JT, Gorelik E, Lang S, Whiteside TL (2010) Adenosine and prostaglandin E2 cooperate in the suppression of immune responses mediated by adaptive regulatory T cells. J Biol Chem 285:27571–27580. doi:10.1074/jbc.M110.127100

    Article  CAS  PubMed  Google Scholar 

  40. Su Y, Jackson EK, Gorelik E (2011) Receptor desensitization and blockade of the suppressive effects of prostaglandin E(2) and adenosine on the cytotoxic activity of human melanoma-infiltrating T lymphocytes. Cancer Immunol Immunother 60:111–122. doi:10.1007/s00262-010-0924-z

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Stagg J, Smyth MJ (2010) Extracellular adenosine triphosphate and adenosine in cancer. Oncogene 29:5346–5358. doi:10.1038/onc.2010.292

    Article  CAS  PubMed  Google Scholar 

  42. Bergmann C, Strauss L, Zeidler R, Lang S, Whiteside TL (2007) Expansion of human T regulatory type 1 cells in the microenvironment of cyclooxygenase 2 overexpressing head and neck squamous cell carcinoma. Cancer Res 67:8865–8873. doi:10.1158/0008-5472.CAN-07-0767

    Article  CAS  PubMed  Google Scholar 

  43. Whiteside TL, Jackson EK (2013) Adenosine and prostaglandin e2 production by human inducible regulatory T cells in health and disease. Front Immunol 4:212. doi:10.3389/fimmu.2013.00212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Hoskin DW, Mader JS, Furlong SJ, Conrad DM, Blay J (2008) Inhibition of T cell and natural killer cell function by adenosine and its contribution to immune evasion by tumor cells (Review). Int J Oncol 32:527–535

    CAS  PubMed  Google Scholar 

  45. Schuler PJ, Harasymczuk M, Schilling B, Saze Z, Strauss L, Lang S, Johnson JT, Whiteside TL (2013) Effects of adjuvant and chemoradiotherapy on the frequency and function of regulatory T cells in patients with head and neck cancer. Clin Cancer Res. [Epub ahead of print]

Download references

Acknowledgments

Supported in part by the NIH Grant P01 CA109688.

Conflict of interest

The author declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theresa L. Whiteside.

Additional information

This paper is a Focussed Research Review based on a presentation given at the Third International Conference on Cancer Immunotherapy and Immunomonitoring (CITIM 2013), held in Krakow, Poland, April 22–25, 2013. It is part of a CII series of Focussed Research Reviews and meeting report.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whiteside, T.L. Regulatory T cell subsets in human cancer: are they regulating for or against tumor progression?. Cancer Immunol Immunother 63, 67–72 (2014). https://doi.org/10.1007/s00262-013-1490-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-013-1490-y

Keywords

Navigation