Skip to main content
Log in

Synthesis, characterization, antioxidant and anticancer activities of a new Schiff base and its M(II) complexes derived from 5-fluorouracil

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

In this study, Schiff base ligand was obtained from the condensation reaction of benzene-1,2-diamine and 5-fluoropyrimidine-2,4(1H,3H)-dione (5-FU). Metal(II) complexes were synthesized with Fe(II), Co(II) and Ni(II) chloride salts. The synthesized ligand and metal complexes were characterized by FT-IR, UV–vis, 1H-13C NMR, elemental analyses, mass spectroscopy, magnetic moments, molar conductivity and thermogravimetric analysis studies. With the help of different techniques reveal Fe(II), Co(II) and Ni(II) complexes have exhibited tetrahedral and octahedral geometry. Ligand acted as bidentate and it binds metal(II) ions through deprotonated-NH, imine-N atom and carbonyl-O atom, respectively. DPPH, ABTS, FRAP, CUPRAC and total antioxidant activity methods were used to determine the antioxidant properties of ligand and metal complexes. According to the results, the synthesized compounds showed very high antioxidant activity compared to 5-FU. The cytotoxicities of the synthesized compounds were performed on MCF-7 (human breast cancer) and L-929 (fibroblast) cell lines using the MTT assay. In addition, the effect of electroporation (EP) on the cytotoxicity of the compounds was investigated. Our results demonstrated that novel Co(II) and Ni(II) complexes show potential as new anticancer agents and ECT may be a viable treatment option for breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Valverde MG, Torroba T. Sulfur-nitrogen heterocycles. Molecules. 2005;10:318–20. https://doi.org/10.3390/10020318.

    Article  Google Scholar 

  2. Malik S, Ghosh S, Mitu L. Complexes of some 3d-metals with a Schiff base derived from 5-acetamido-1,3,4-thiadiazole-2-sulphonamide and their biological activity. J Serb Chem Soc. 2011;76:1387–94. https://doi.org/10.2298/JSC110111118M.

    Article  CAS  Google Scholar 

  3. Vigato PA, Tamburini S. The challenge of cyclic and acyclic Schiff bases and related derivatives. Coord Chem Rev. 2004;248:1717–2128. https://doi.org/10.1016/j.cct.2003.09.003.

    Article  CAS  Google Scholar 

  4. Buldurun K, Turan N, Bursal E, Aras A, Mantarci A, Çolak N, Türkan F, Gülçin İ. Synthesis, characterization, powder X-ray diffraction analysis, thermal stability, antioxidant properties and enzyme inhibitions of M(II)-Schiff base ligand complexes. J Biomol Struct Dyn. 2021;39:6480–7. https://doi.org/10.1080/07391102.2020.1802340.

    Article  CAS  PubMed  Google Scholar 

  5. Naeimi H, Moradian M. Efficient synthesis and characterization of some novel nitro-Schiff bases and their complexes of nickel(II) and copper(II). J Chem. 2013;10:8. https://doi.org/10.1155/2013/701826.

    Article  CAS  Google Scholar 

  6. Turan N, Buldurun K, Türkan F, Aras A, Çolak N, Murahari M, Bursal E, Mantarci A. Some metal chelates with Schiff base ligand: synthesis, structure elucidation, thermal behavior, XRD evaluation, antioxidant activity, enzyme inhibition, and molecular docking studies. Mol Divers. 2021. https://doi.org/10.1007/s11030-021-10344-x.

    Article  PubMed  Google Scholar 

  7. Gonul I, Kose M, Ceyhan G, Serin S. Methoxy group containing bidentate Schiff base ligands and their transition metal complexes: synthesis, structural characterization, photoluminescence, antioxidant capacity and superoxide dismutase activity studies. Inorg Chim Acta. 2016;453:522–30. https://doi.org/10.1016/j.ica.2016.09.004.

    Article  CAS  Google Scholar 

  8. Savcı A, Koçpınar EF, Budak H, Çiftci M, Şişecioğlu M. The effects of amoxicillin, cefazolin, and gentamicin antibiotics on the antioxidant system in mouse heart tissues. Protein Pept Lett. 2020;27(7):614–22. https://doi.org/10.2174/0929866526666191112125949.

    Article  CAS  PubMed  Google Scholar 

  9. Turan N, Buldurun K, Alan Y, Savci A, Colak N, Mantarci A. Synthesis, characterization, antioxidant, antimicrobial and DNA binding properties of ruthenium(II), cobalt(II) and nickel(II) complexes of Schiff base containing o-vanillin. Res Chem Intermed. 2019;45:3525–45. https://doi.org/10.1007/s11164-019-03806-3.

    Article  CAS  Google Scholar 

  10. Tadavi SK, Yadav AA, Bendre RS. Synthesis and characterization of a novel Schiff base of 1,2-diaminopropane with substituted salicyaldehyde and its transition metal complexes: single crystal structures and biological activities. J Mol Struct. 2018;1152:223–31. https://doi.org/10.1016/j.molstruc.2017.09.112.

    Article  CAS  Google Scholar 

  11. Buldurun K, Turan N, Savci A, Colak N. Synthesis, structural characterization and biological activities of metal(II) complexes with Schiff bases derived from 5-bromosalicylaldehyde: Ru(II) complexes transfer hydrogenation. J Saudi Chem Soc. 2019;23:205–14. https://doi.org/10.1016/j.jscs.2018.06.002.

    Article  CAS  Google Scholar 

  12. Chow LQM. Head and neck cancer. N Engl J Med. 2020;382:60–72. https://doi.org/10.1056/NEJMra1715715.

    Article  CAS  PubMed  Google Scholar 

  13. Gugic J, Strojan P. Squamous cell carcinoma of the head and neck in the elderly. Rep Pract Oncol Radiother. 2012;18:16–25. https://doi.org/10.1016/j.rpor.2012.07.014.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Campana LG, Edhemovic I, Soden D, Perrone AM, Scarpa M, Campanacci L, Cemazar M, Valpione S, Miklavcic D, Mocellin S, Sieni E, Sersa G. Electrochemotherapy-emerging applications technical advances, new indications, combined approaches, and multi-institutional collaboration. Eur J Surg Oncol. 2019;45:92–102. https://doi.org/10.1016/j.ejso.2018.11.023.

    Article  PubMed  Google Scholar 

  15. Gehl J, Sersa G, Matthiessen LW, Muir T, Soden D, Occhini A, Quaglino P, Curatolo P, Campana LG, Kunte C, Clover AJP, Bertino G, Farricha V, Odili J, Dahlstrom K, Benazzo M, Mir LM. Updated standard operating procedures for electrochemotherapy of cutaneous tumours and skin metastases. Acta Oncol. 2018;57:874–82. https://doi.org/10.1080/0284186X.2018.1454602.

    Article  PubMed  Google Scholar 

  16. Kiełbik A, Szlasa W, Novickij V, Szewczyk A, Maciejewska M, Saczko J, Kulbacka J. Effects of high-frequency nanosecond pulses on prostate cancer cells. Sci Rep. 2021;11(1):15835. https://doi.org/10.1038/s41598-021-95180-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alkış ME, Turan N, Alan Y, Irtegun Kandemir S, Buldurun K. Effects of electroporation on anticancer activity of 5-FU and newly synthesized zinc(II) complex in chemotherapy-resistance human brain tumor cells. Med Oncol. 2021;38(11):129. https://doi.org/10.1007/s12032-021-01579-7.

    Article  CAS  PubMed  Google Scholar 

  18. Strojan P, Grošelj A, Serša G, Plaschke CC, Vermorken JB, Nuyts S, Ferlito A. Electrochemotherapy in mucosal cancer of the head and neck: a systematic review. Cancers. 2021;13(6):1254. https://doi.org/10.3390/cancers13061254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mitsuda H, Yasumoto K, Iwami K. Antioxidative action of indole compounds during the autoxidation of linoleic acid. Eiyo to Syokuryo. 1966;19(3):210–4. https://doi.org/10.4327/jsnfs1949.19.210.

    Article  CAS  Google Scholar 

  20. Oyaizu M. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr Diet. 1986;44(6):307–15. https://doi.org/10.5264/eiyogakuzashi.44.307.

    Article  CAS  Google Scholar 

  21. Kilic A, Savci A, Alan Y, Beyazsakal L. The synthesis of novel boronate esters and N-Heterocyclic carbene (NHC)-stabilized boronate esters: spectroscopy, antimicrobial and antioxidant studies. J Organomet Chem. 2020;917:121268. https://doi.org/10.1016/j.jorganchem.2020.121268.

    Article  CAS  Google Scholar 

  22. Kilic A, Savci A, Alan Y, Birsen H. Synthesis and spectroscopic properties of 4,4’-bipyridine linker bioactive macrocycle boronate esters: photophysical properties and antimicrobial with antioxidant studies. J Organomet Chem. 2021;941:121807. https://doi.org/10.1016/j.jorganchem.2021.121807.

    Article  CAS  Google Scholar 

  23. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26:1231–7. https://doi.org/10.1016/S0891-5849(98)00315-3.

    Article  CAS  PubMed  Google Scholar 

  24. Fattah A, Morovati A, Niknam Z, Mashouri L, Asadi A, Tvangar Rizi S, Abbasi M, Shakeri F, Abazari O. The synergistic combination of cisplatin and piperine induces apoptosis in MCF-7 cell line. Iran J Public Health. 2021;50(5):1037–47. https://doi.org/10.18502/ijph.v50i5.6121.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mawalizadeh F, Mohammadzadeh G, Khedri A, Rashidi M. Quercetin potentiates the chemosensitivity of human breast cancer cells to 5-fluorouracil. Mol Biol Rep. 2021;48(12):7733–42. https://doi.org/10.21203/rs.3.rs-682735/v1.

    Article  CAS  PubMed  Google Scholar 

  26. Ĉemazr M, Jarm T, Miklavĉiĉ D, Lebar AM, Ihan A, Kopitar NA, Serŝa G. Effect of electric-field intensity on electropermeabilization and electrosensitmty of various tumor-cell lines in vitro. Electro Magnetobiol. 1998;17(2):263–72. https://doi.org/10.3109/15368379809022571.

    Article  Google Scholar 

  27. Alki̇s ME. Effects of electroporation on cytotoxicity of 4-aminopyrimidin-2-(1H)-one based ligand and its cobalt(II) and ruthenium(II) complexes in MCF-7 cancer cells. Dicle Med J. 2021;48:498–506. https://doi.org/10.5798/dicletip.988061.

    Article  Google Scholar 

  28. Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the MTT assay. Cold Spring Harb Protoc. 2018. https://doi.org/10.1101/pdb.prot095505.

    Article  PubMed  Google Scholar 

  29. Mohanan K, Murukan B. Complexes of manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and zinc(II) with a bishydrazone. Synth React Inorg Met-Org Nano-Met Chem. 2005;35:837–44. https://doi.org/10.1080/15533170500357988.

    Article  CAS  Google Scholar 

  30. Turan N, Tanış E, Buldurun K, Çolak N. Synthesis, structure, DFT calculations, and in silico toxic potential of Ni(II), Zn(II), and Fe(II) complexes with a tridentate Schiff base. Russ J Gen Chem. 2021;91:1572–7. https://doi.org/10.1134/S107036322108020X.

    Article  CAS  Google Scholar 

  31. AbouEl-Enein SA, Emam SM, Polis MW, Emara EM. Synthesis and characterization of some metal complexes derived from azo compound of 4,4’-methylenedianiline and antipyrine: evaluation of their biological activity on some land snail species. J Mol Struct. 2015;1099:567–78. https://doi.org/10.1016/j.molstruc.2015.06.072.

    Article  CAS  Google Scholar 

  32. Hashem HE, Mohamed EA, Farag AA, Negm NA, Azmy EAM. New heterocyclic Schiff base-metal complex: synthesis, characterization, density functional theory study, and antimicrobial evaluation. Appl Organomet Chem. 2021;35(9):e6322. https://doi.org/10.1002/aoc.6322.

    Article  CAS  Google Scholar 

  33. Dharmaraja J, Balamurugan J, Shobana S. Synthesis, structural elucidation, microbial, antioxidant and nuclease activities of some novel divalent M(II) complexes derived from 5-fluorouracil and L-tyrosine. J Saudi Chem Soc. 2017;21:S67–76. https://doi.org/10.1016/j.jscs.2013.10.007.

    Article  CAS  Google Scholar 

  34. Portakal ED, Kaya Y, Demirayak E, Yeldir EK, Erçağ A, Kaya İ. Ni(II), Zn(II), and Fe(III) complexes derived from novel unsymmetrical salen-type ligands: preparation, characterization and some properties. J Coord Chem. 2022. https://doi.org/10.1080/00958972.2022.2070485.

    Article  Google Scholar 

  35. Abdel-Rahman LH, Abu-Dief AM, El-Khatib RM, Abdel-Fatah SM. Some new nano-sized Fe(II), Cd(II) and Zn(II) Schiff base complexes as precursor for metal oxides: sonochemical synthesis, characterization, DNA interaction, in vitro antimicrobial and anticancer activities. Bioorg Chem. 2016;69:140–52. https://doi.org/10.1016/j.bioorg.2016.10.009.

    Article  CAS  PubMed  Google Scholar 

  36. Orojloo M, Zolgharnein P, Solimannejad M, Amani S. Synthesis and characterization of cobalt (II), nickel (II), copper (II) and zinc (II) complexes derived from two Schiff base ligands: spectroscopic, thermal, magnetic moment, electrochemical and antimicrobial studies. Inorg Chim Acta. 2017;467:227–37. https://doi.org/10.1016/j.ica.2017.08.016.

    Article  CAS  Google Scholar 

  37. Shebl M, Adly OMI, El-Shafiy HF, Khalil SME, Taha A, Mahdi MAN. Structural variety of mono- and binuclear transition metal complexes of 3-[(2-hydroxy-benzylidene)-hydrazono]-1-(2-hydroxyphenyl)-butan-1-one: synthesis, spectral, thermal, molecular modeling, antimicrobial and antitumor studies. J Mol Struct. 2017;1134:649–60. https://doi.org/10.1016/j.molstruc.2017.01.012.

    Article  CAS  Google Scholar 

  38. Saleem SS, Sankarganesh M, Jose PA, Raja JD. Design, synthesis, antioxidant, antimicrobial, DNA binding and molecular docking studies of morpholine based Schiff base ligand and its metal(II) complexes. Inorg Chem Commun. 2021;124:108396. https://doi.org/10.1016/j.inoche.2020.108396.

    Article  CAS  Google Scholar 

  39. Buldurun K, Tanış E, Turan N, Çolak N, Çankaya N. Solvent effects on the electronic and optical properties of Ni(II), Zn(II), and Fe(II) complexes of a Schiff base derived from 5-bromo-2-hydroxybenzaldehyde. J Chem Res. 2021;45(7–8):753–9. https://doi.org/10.1177/1747519821995424.

    Article  CAS  Google Scholar 

  40. El-Sayed NMA, Elsawy H, Adam MSS. Polar and nonpolar iron(II) complexes of isatin hydrazone derivatives as effective catalysts in oxidation reactions and their antimicrobial and anticancer activities. Appl Organomet Chem. 2022;36(5):e6662. https://doi.org/10.1002/aoc.6662.

    Article  CAS  Google Scholar 

  41. Alan Y, Savcı A, Koçpınar EF, Kurşat M, Topdemir S, Karataş M, Çakmak B. Antimicrobial, antioxidant and DNA protective effects and phenolic content of Lallementia canescens (L.) Fisch. C.A.Mey. and Lallementia peltata (L.) Fisch. C.A.Mey. Biol Divers Conserv. 2019;12(3):78–88. https://doi.org/10.5505/biodicon.2019.61587.

    Article  Google Scholar 

  42. Nie R, Zhang Y, Zhang H, Jin Q, Wu G, Wang X. Effect of different processing methods on physicochemical properties, chemical compositions and in vitro antioxidant activities of Paeonia lactiflora Pall seed oils. Food Chem. 2020;332:127408. https://doi.org/10.1016/j.foodchem.2020.127408.

    Article  CAS  PubMed  Google Scholar 

  43. Liu Z, Li H, Qi Y, Zhu Z, Huang D, Zhang K, Pan J, Wen L, Zou Z. Cinnamomum camphora leaves as a source of proanthocyanidins separated using microwave-assisted extraction method and evaluation of their antioxidant activity in vitro. Arab J Chem. 2021;14(9):103328. https://doi.org/10.1016/j.arabjc.2021.103328.

    Article  CAS  Google Scholar 

  44. Savcı A, Buldurun K, Kırkpantur G. A new Schiff base containing 5-FU and its metal Complexes: synthesis, characterization, and biological activities. Inorg Chem Commun. 2021;134:109060. https://doi.org/10.1016/j.inoche.2021.109060.

    Article  CAS  Google Scholar 

  45. Li Y, Yang Z, Liao Z, Han Z, Liu Z. Synthesis, crystal structure, DNA binding properties and antioxidant activities of transition metal complexes with 3-carbaldehyde-chromone semicarbazone. Inorg Chem Commun. 2010;13:1213–6. https://doi.org/10.1016/j.inoche.2010.07.005.

    Article  CAS  Google Scholar 

  46. Venkateswarlu K, Kumar MP, Rambabu A, Vamsikrishna N, Daravath S, Rangan K. Crystal structure, DNA binding, cleavage, antioxidant and antibacterial studies of Cu(II), Ni(II) and Co(III) complexes with 2-((furan-2-yl)methylimino)methyl)-6-ethoxyphenol Schiff base. J Mol Struct. 2018;1160:198–207. https://doi.org/10.1016/j.molstruc.2018.02.004.

    Article  CAS  Google Scholar 

  47. Kinhult S, Albertsson M, Eskilsson J, Cwikiel M. Effects of probucol on endothelial damage by 5-fluorouracil. Acta Oncol. 2003;42(4):304–8. https://doi.org/10.1080/02841860310004409.

    Article  CAS  PubMed  Google Scholar 

  48. Rashid S, Ali N, Nafees S, Ahmad ST, Hasan SK, Sultana S. Abrogation of 5-flourouracil induced renal toxicity by bee propolis via targeting oxidative stress and inflammation in Wistar rats. J Pharm Res. 2013;7(2):189–94. https://doi.org/10.1016/j.jopr.2013.03.003.

    Article  CAS  Google Scholar 

  49. Özdemir Ö. Bis-azo-linkage Schiff bases-Part(II): synthesis, characterization, photoluminescence and DPPH radical scavenging properties of their novel luminescent mononuclear Zn(II) complexes. J Photochem Photobiol A. 2020;392:112356. https://doi.org/10.1016/j.jphotochem.2020.112356.

    Article  CAS  Google Scholar 

  50. Mathew S, Abraham TE. Studies on the antioxidant activities of cinnamon (Cinnamomum verum) bark extracts, through various in vitro models. Food Chem. 2006;94:520–8. https://doi.org/10.1016/j.foodchem.2004.11.043.

    Article  CAS  Google Scholar 

  51. Liu KG, Cai XQ, Li XC, Qin DA, Hu ML. Arene-ruthenium(II) complexes containing 5-fluorouracil-1-methyl isonicotinate: synthesis and characterization of their anticancer activity. Inorg Chim Acta. 2012;388:78–83. https://doi.org/10.1016/j.ica.2012.02.046.

    Article  CAS  Google Scholar 

  52. Weiss JT, Fraser C, Rubio-Ruiz B, Myers SH, Crispin R, Dawson JC, Brunton VG, Patton EE, Carragher NO, Unciti-Broceta A. N-alkynyl derivatives of 5-fluorouracil: susceptibility to palladium-mediated dealkylation and toxigenicity in cancer cell culture. Front Chem. 2014;29(2):56. https://doi.org/10.3389/fchem.2014.00056.

    Article  CAS  Google Scholar 

  53. Sankarganesh M, Adwin Jose P, Dhaveethu Raja J, Kesavan MP, Vadivel M, Rajesh J, Karthikeyan S. New pyrimidine based ligand capped gold and platinum nano particles: synthesis, characterization, antimicrobial, antioxidant, DNA interaction and in vitro anticancer activities. J Photochem Photobiol B. 2017;176:44–53. https://doi.org/10.1016/j.jphotobiol.2017.09.013.

    Article  CAS  PubMed  Google Scholar 

  54. Arafath MA, Adam F, Razali MR, Ahmed Hassan LE, Ahamed MBK, Majid AMSA. Synthesis, characterization and anticancer studies of Ni(II), Pd(II) and Pt(II) complexes with Schiff base derived from N-methylhydrazinecarbothioamide and 2-hydroxy-5-methoxy-3-nitrobenzaldehyde. J Mol Struct. 2017;1130:791–8. https://doi.org/10.1016/j.molstruc.2016.10.099.

    Article  CAS  Google Scholar 

  55. Malekshah RE, Shakeri F, Khaleghian A, Salehi M. Developing a biopolymeric chitosan supported Schiff-base and Cu(II), Ni(II) and Zn(II) complexes and biological evaluation as pro-drug. Int J Biol Macromol. 2020;152:846–61. https://doi.org/10.1016/j.ijbiomac.2020.02.245.

    Article  CAS  PubMed  Google Scholar 

  56. Alkış ME, Buldurun K, Turan N, Alan Y, Yılmaz ÜK, Mantarcı A. Synthesis, characterization, antiproliferative of pyrimidine based ligand and its Ni(II) and Pd(II) complexes and effectiveness of electroporation. J Biomol Struct Dyn. 2020. https://doi.org/10.1080/07391102.2020.1852965.

    Article  PubMed  Google Scholar 

  57. Alkış ME, Keleştemür Ü, Alan Y, Turan N, Buldurun K. Cobalt and ruthenium complexes with pyrimidine based Schiff base: synthesis, characterization, anticancer activities and electrochemotherapy efficiency. J Mol Struct. 2021;1226:129402. https://doi.org/10.1016/j.molstruc.2020.129402.

    Article  CAS  Google Scholar 

  58. Cadossi R, Ronchetti M, Cadossi M. Locally enhanced chemotherapy by electroporation: clinical experiences and perspective of use of electrochemotherapy. Future Oncol. 2014;10(5):877–90. https://doi.org/10.2217/fon.13.235.

    Article  CAS  PubMed  Google Scholar 

  59. Falk H, Lambaa S, Johannesen HH, Wooler G, Venzo A, Gehl J. Electrochemotherapy and calcium electroporation inducing a systemic immune response with local and distant remission of tumors in a patient with malignant melanoma-a case report. Acta Oncol. 2017;56(8):1126–31. https://doi.org/10.1080/0284186X.2017.1290274.

    Article  PubMed  Google Scholar 

  60. Perrone AM, Galuppi A, Pirovano C, Borghese G, Covarelli P, De Terlizzi F, De Iaco P. Palliative electrochemotherapy in vulvar carcinoma: preliminary results of the ELECHTRA (electrochemotherapy vulvar cancer) multicenter study. Cancers. 2019;11(5):657. https://doi.org/10.3390/cancers11050657.

    Article  CAS  PubMed Central  Google Scholar 

  61. Schmidt G, Juhasz-Böss I, Solomayer E-F, Herr D. Electrochemotherapy in breast cancer: a review of references. Geburtshilfe Frauenheilkund. 2014;74(6):557–62. https://doi.org/10.1055/s-0034-1368538.

    Article  CAS  Google Scholar 

  62. Wichtowski M, Murawa D, Czarnecki R, Piechocki J, Nowecki Z, Witkiewicz W. Electrochemotherapy in the treatment of breast cancer metastasis to the skin and subcutaneous tissue-multicenter experience. Oncol Res Treat. 2019;42(1–2):47–51. https://doi.org/10.1159/000494093.

    Article  CAS  PubMed  Google Scholar 

  63. Esmekaya MA, Kayhan H, Yagci M, Coskun A, Canseven AG. Effects of electroporation on tamoxifen delivery in estrogen receptor positive (ER+) human breast carcinoma cells. Cell Biochem Biophys. 2017;75(1):103–9. https://doi.org/10.1007/s12013-016-0776-z.

    Article  CAS  PubMed  Google Scholar 

  64. Probst U, Fuhrmann I, Beyer L, Wiggermann P. Electrochemotherapy as a new modality in interventional oncology: a review. Technol Cancer Res Treat. 2018;17:1533033818785329. https://doi.org/10.1177/1533033818785329.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Esmaeili N, Friebe M. Electrochemotherapy: a review of current status, alternative IGP approaches, and future perspectives. J Healthc Eng. 2019;2019:11. https://doi.org/10.1155/2019/2784516.

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Savcı.

Ethics declarations

Conflict of interest

The authors have disclosed no conflict of interest. The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savcı, A., Buldurun, K., Alkış, M.E. et al. Synthesis, characterization, antioxidant and anticancer activities of a new Schiff base and its M(II) complexes derived from 5-fluorouracil. Med Oncol 39, 172 (2022). https://doi.org/10.1007/s12032-022-01774-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01774-0

Keywords

Navigation