Medical Oncology

, 34:180 | Cite as

Notch signaling pathway networks in cancer metastasis: a new target for cancer therapy

  • Li Li
  • Ping Tang
  • Shun Li
  • Xiang Qin
  • Hong Yang
  • Chunhui Wu
  • Yiyao Liu
Review Article


Notch signaling pathway is evolutionarily conserved in mammals, which plays an important role in cell development and differentiation. In recent years, increasing evidence has shown that aberrant activation of Notch is associated with tumor process. Aberrant activation of Notch signaling pathway has been found in many different solid tumors can induce cell proliferation, metastasis and epithelial-mesenchymal transition. Notch receptor and its ligand are both single transmembrane protein, and Notch is activated when it binds to the Notch ligand of neighbor cells. The signal transduction of Notch signaling pathway is only between cells that are in contact with each other, which is independent of second messengers. Thus, Notch needs to cross talk with other signaling pathways, including PI3K/AKT, NF-κB, integrin and miRNAs, to precisely regulate cell fate. In this review, we summarize the roles of Notch signaling pathway in tumor metastasis and its regulatory mechanisms and discuss the current treatment strategies targeting Notch signal pathway.


Notch signaling pathway Cancer Metastasis miRNA Treatment strategy 



We would like to thank the National Natural Science Foundation of China (11772088, 31470906, 31700811, 11502049, 81671821, 31470959, 81471785), the Basic Research Program of Sichuan Science and Technology (2017JY0019, 2017JY0217), the China Postdoctoral Science Foundation (2016M592657), the Fundamental Research Funds for the Central Universities (ZYGX2016Z001, ZYGX2015J143) and the Postdoctoral Science Foundation of University of Electronic Science and Technology of China (Y0200623601737) for financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30. doi: 10.3322/caac.21387.CrossRefPubMedGoogle Scholar
  2. 2.
    Charpentier M, Martin S. Interplay of stem cell characteristics, EMT, and microtentacles in circulating breast tumor cells. Cancers. 2013;5(4):1545–65. doi: 10.3390/cancers5041545.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Andersson M, Olsen JH. Malignant mesotheliomas in Denmark 1943–1980. Cancer statistics 9. Ugeskr Laeger. 1984;146(14):1085–7.PubMedGoogle Scholar
  4. 4.
    Zardawi SJ, Zardawi I, McNeil CM, Millar EK, McLeod D, Morey AL, et al. High Notch1 protein expression is an early event in breast cancer development and is associated with the HER-2 molecular subtype. Histopathology. 2010;56(3):286–96. doi: 10.1111/j.1365-2559.2009.03475.x.CrossRefPubMedGoogle Scholar
  5. 5.
    Danza G, Di Serio C, Ambrosio MR, Sturli N, Lonetto G, Rosati F, et al. Notch3 is activated by chronic hypoxia and contributes to the progression of human prostate cancer. Int J Cancer. 2013;133(11):2577–86. doi: 10.1002/ijc.28293.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Ai Q, Ma X, Huang Q, Liu S, Shi T, Zhang C, et al. High-level expression of Notch1 increased the risk of metastasis in T1 stage clear cell renal cell carcinoma. PLoS ONE. 2012;7(4):e35022. doi: 10.1371/journal.pone.0035022.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Yang Y, Ahn Y-H, Gibbons DL, Zang Y, Lin W, Thilaganathan N, et al. The Notch ligand Jagged2 promotes lung adenocarcinoma metastasis through a miR-200—dependent pathway in mice. J Clin Investig. 2011;121(4):1373–85. doi: 10.1172/jci42579.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Liu H, Wang J, Liu Z, Wang L, Liu S, Zhang Q. Jagged1 modulated tumor-associated macrophage differentiation predicts poor prognosis in patients with invasive micropapillary carcinoma of the breast. Medicine. 2017;96(16):e6663. doi: 10.1097/MD.0000000000006663.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, et al. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res. 2005;65(18):8530–7. doi: 10.1158/0008-5472.CAN-05-1069.CrossRefPubMedGoogle Scholar
  10. 10.
    Chance O. Value of statistics in the study of cancer of the uterine cervix. Comptes rendus de la Societe francaise de gynecologie. 1951;21(7):305–11.PubMedGoogle Scholar
  11. 11.
    Dotta JS, Delporte TV. Statistics on the treatment of prostatic cancer. Revista argentina de urologia. 1951;20(9–11):255–7.PubMedGoogle Scholar
  12. 12.
    Mumm J. Notch signaling: from the outside in. Dev Biol. 2000;228(2):151–65. doi: 10.1006/dbio.2000.9960.CrossRefPubMedGoogle Scholar
  13. 13.
    Lai EC. Notch signaling: control of cell communication and cell fate. Development. 2004;131(5):965–73. doi: 10.1242/dev.01074.CrossRefPubMedGoogle Scholar
  14. 14.
    Cesarani F, Garbagnoli E. Local recurrence and lymphatic and osseous metastases following surgery of breast cancer; radiotherapy department statistics for 1944-50. Athena; rassegna mensile di biologia, clinica e terapia. 1951;17(7–8):189–92.PubMedGoogle Scholar
  15. 15.
    Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell. 2009;137(2):216–33. doi: 10.1016/j.cell.2009.03.045.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Weinmaster G. Notch signal transduction a real rip and more. Curr Opin Genet Dev. 2000;10:363–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Nahum AM. Biting the bullet: minimum standards for reporting cancer treatment statistics. Head Neck Surg. 1979;1(3):201.CrossRefPubMedGoogle Scholar
  18. 18.
    Upton AC. Survey: reporting practices for cancer treatment statistics. Head Neck Surg. 1979;1(6):500.CrossRefGoogle Scholar
  19. 19.
    Ranganathan P, Weaver KL, Capobianco AJ. Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer. 2011;11(5):338–51. doi: 10.1038/nrc3035.CrossRefPubMedGoogle Scholar
  20. 20.
    Ellisen LW, Bird J, West PC, et al. TAN+1, the human hormolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastie neoplasms. Cell. 1991;66(4):649–61.CrossRefPubMedGoogle Scholar
  21. 21.
    Weng AP, Ferrando AA, Lee W, Morris JP IV, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Thomas Look A, Aster JC. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306(5694):269–71. doi: 10.1126/science.1102160.CrossRefPubMedGoogle Scholar
  22. 22.
    Espinosa L, Cathelin S, D’Altri T, Trimarchi T, Statnikov A, Guiu J, et al. The Notch/Hes1 pathway sustains NF-kappaB activation through CYLD repression in T cell leukemia. Cancer Cell. 2010;18(3):268–81. doi: 10.1016/j.ccr.2010.08.006.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wu F, Stutzman A, Mo YY. Notch signaling and its role in breast cancer. Front Biosci. 2007;12:4370–83.CrossRefPubMedGoogle Scholar
  24. 24.
    Ma YC, Shi C, Zhang YN, Wang LG, Liu H, Jia HT, et al. The tyrosine kinase c-Src directly mediates growth factor-induced Notch-1 and Furin interaction and Notch-1 activation in pancreatic cancer cells. PLoS ONE. 2012;7(3):e33414. doi: 10.1371/journal.pone.0033414.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Song LL, Peng Y, Yun J, Rizzo P, Chaturvedi V, Weijzen S, et al. Notch-1 associates with IKKalpha and regulates IKK activity in cervical cancer cells. Oncogene. 2008;27(44):5833–44. doi: 10.1038/onc.2008.190.CrossRefPubMedGoogle Scholar
  26. 26.
    Zhou W, Fu XQ, Zhang LL, Zhang J, Huang X, Lu XH, et al. The AKT1/NF-kappaB/Notch1/PTEN axis has an important role in chemoresistance of gastric cancer cells. Cell Death Dis. 2013;4:e847. doi: 10.1038/cddis.2013.375.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zhang Y, Li B, Ji ZZ, Zheng PS. Notch1 regulates the growth of human colon cancers. Cancer. 2010;116(22):5207–18. doi: 10.1002/cncr.25449.CrossRefPubMedGoogle Scholar
  28. 28.
    Lefort K, Mandinova A, Ostano P, Kolev V, Calpini V, Kolfschoten I, et al. Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases. Genes Dev. 2007;21(5):562–77. doi: 10.1101/gad.1484707.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Viatour P, Ehmer U, Saddic LA, Dorrell C, Andersen JB, Lin C, et al. Notch signaling inhibits hepatocellular carcinoma following inactivation of the RB pathway. J Exp Med. 2011;208(10):1963–76. doi: 10.1084/jem.20110198.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gupta A, Wang Y, Browne C, Kim S, Case T, Paul M, et al. Neuroendocrine differentiation in the 12T-10 transgenic prostate mouse model mimics endocrine differentiation of pancreatic beta cells. Prostate. 2008;68(1):50–60. doi: 10.1002/pros.20650.CrossRefPubMedGoogle Scholar
  31. 31.
    Konishi J, Yi F, Chen X, Vo H, Carbone DP, Dang TP. Notch3 cooperates with the EGFR pathway to modulate apoptosis through the induction of bim. Oncogene. 2010;29(4):589–96. doi: 10.1038/onc.2009.366.CrossRefPubMedGoogle Scholar
  32. 32.
    Parr C, Watkins G, Jiang WG. The possible correlation of Notch-1 and Notch-2 with clinical outcome and tumour clinicopathological parameters in human breast cancer. Int J Mol Med. 2004;14(5):779–86.PubMedGoogle Scholar
  33. 33.
    PRESENTATION of results in the treatment of cancer. V. World Health Organization Expert Committee on Health Statistics. Br J Radiol. 1951;24(282):311–314. doi: 10.1259/0007-1285-24-282-311.
  34. 34.
    Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331(6024):1559–64. doi: 10.1126/science.1203543.CrossRefPubMedGoogle Scholar
  35. 35.
    Li S, Zhang J, Yang H, Wu C, Dang X, Liu Y. Copper depletion inhibits CoCl2-induced aggressive phenotype of MCF-7 cells via downregulation of HIF-1 and inhibition of Snail/Twist-mediated epithelial-mesenchymal transition. Sci Rep. 2015;5:12410. doi: 10.1038/srep12410.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sahlgren C, Gustafsson MV, Jin S, Poellinger L, Lendahl U. Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci. 2008;105(17):6392–7. doi: 10.1073/pnas.0802047105.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kao SH, Wu KJ, Lee WH. Hypoxia, epithelial-mesenchymal transition, and TET-mediated epigenetic changes. J Clin Med. 2016;. doi: 10.3390/jcm5020024.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Ahmad A, Wang Z, Kong D, Ali R, Ali S, Banerjee S, et al. Platelet-derived growth factor-D contributes to aggressiveness of breast cancer cells by up-regulating Notch and NF-kappaB signaling pathways. Breast Cancer Res Treat. 2011;126(1):15–25. doi: 10.1007/s10549-010-0883-2.CrossRefPubMedGoogle Scholar
  39. 39.
    Xie M, Zhang L, He CS, Xu F, Liu JL, Hu ZH, et al. Activation of Notch-1 enhances epithelial-mesenchymal transition in gefitinib-acquired resistant lung cancer cells. J Cell Biochem. 2012;113(5):1501–13. doi: 10.1002/jcb.24019.PubMedGoogle Scholar
  40. 40.
    Erler JT, Bennewith KL, Nicolau M, Dornhofer N, Kong C, Le QT, et al. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature. 2006;440(7088):1222–6. doi: 10.1038/nature04695.CrossRefPubMedGoogle Scholar
  41. 41.
    Peinado H, Portillo F, Cano A. Switching on-off Snail: LOXL2 versus GSK3beta. Cell Cycle. 2005;4(12):1749–52. doi: 10.4161/cc.4.12.2224.CrossRefPubMedGoogle Scholar
  42. 42.
    Yuan XW, Wang DM, Hu Y, Tang YN, Shi WW, Guo XJ, et al. Hepatocyte nuclear factor 6 suppresses the migration and invasive growth of lung cancer cells through p53 and the inhibition of epithelial-mesenchymal transition. J Biol Chem. 2013;288(43):31206–16. doi: 10.1074/jbc.M113.480285.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ramms L, Fabris G, Windoffer R, Schwarz N, Springer R, Zhou C, et al. Keratins as the main component for the mechanical integrity of keratinocytes. Proc Natl Acad Sci USA. 2013;110(46):18513–8. doi: 10.1073/pnas.1313491110.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Mierke CT. The fundamental role of mechanical properties in the progression of cancer disease and inflammation. Rep Prog Phys. 2014;77(7):076602. doi: 10.1088/0034-4885/77/7/076602.CrossRefPubMedGoogle Scholar
  45. 45.
    Diaz B, Yuen A, Iizuka S, Higashiyama S, Courtneidge SA. Notch increases the shedding of HB-EGF by ADAM12 to potentiate invadopodia formation in hypoxia. J Cell Biol. 2013;201(2):279–92. doi: 10.1083/jcb.201209151.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Higashiyama S, Abraham JA, Miller J, Fiddes JC, Klagsbrun M. A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF. Science. 1991;251(4996):936–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Higashiyama S, Iwamoto R, Goishi K, Raab G, Taniguchi N, Klagsbrun M, et al. The membrane protein CD9/DRAP 27 potentiates the juxtacrine growth factor activity of the membrane-anchored heparin-binding EGF-like growth factor. J Cell Biol. 1995;128(5):929–38.CrossRefPubMedGoogle Scholar
  48. 48.
    Miyamoto S, Hirata M, Yamazaki A, Kageyama T, Hasuwa H, Mizushima H, et al. Heparin-binding EGF-like growth factor is a promising target for ovarian cancer therapy. Cancer Res. 2004;64(16):5720–7. doi: 10.1158/0008-5472.CAN-04-0811.CrossRefPubMedGoogle Scholar
  49. 49.
    Jezierska A, Motyl T. Matrix metalloproteinase-2 involvement in breast cancer progression: a mini-review. Med Sci Monit. 2009;15(2):RA32–40.PubMedGoogle Scholar
  50. 50.
    Li L, Zhao F, Lu J, Li T, Yang H, Wu C, et al. Notch-1 signaling promotes the malignant features of human breast cancer through NF-kappaB activation. PLoS ONE. 2014;9(4):e95912. doi: 10.1371/journal.pone.0095912.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Wang Z, Zhang Y, Li Y, Banerjee S, Liao J, Sarkar FH. Down-regulation of Notch-1 contributes to cell growth inhibition and apoptosis in pancreatic cancer cells. Mol Cancer Ther. 2006;5(3):483–93. doi: 10.1158/1535-7163.MCT-05-0299.CrossRefPubMedGoogle Scholar
  52. 52.
    Inoue J, Gohda J, Akiyama T, Semba K. NF-kappaB activation in development and progression of cancer. Cancer Sci. 2007;98(3):268–74. doi: 10.1111/j.1349-7006.2007.00389.x.CrossRefPubMedGoogle Scholar
  53. 53.
    Dolcet X, Llobet D, Pallares J, Matias-Guiu X. NF-kB in development and progression of human cancer. Virchows Arch. 2005;446(5):475–82. doi: 10.1007/s00428-005-1264-9.CrossRefPubMedGoogle Scholar
  54. 54.
    Yamamoto M, Taguchi Y, Ito-Kureha T, Semba K, Yamaguchi N, Inoue J. NF-kappaB non-cell-autonomously regulates cancer stem cell populations in the basal-like breast cancer subtype. Nat Commun. 2013;4:2299. doi: 10.1038/ncomms3299.PubMedGoogle Scholar
  55. 55.
    Zhang X, Chen T, Zhang J, Mao Q, Li S, Xiong W, et al. Notch1 promotes glioma cell migration and invasion by stimulating beta-catenin and NF-kappaB signaling via AKT activation. Cancer Sci. 2012;103(2):181–90. doi: 10.1111/j.1349-7006.2011.02154.x.CrossRefPubMedGoogle Scholar
  56. 56.
    Li L, Zhang J, Xiong N, Li S, Chen Y, Yang H, et al. Notch-1 signaling activates NF-kappaB in human breast carcinoma MDA-MB-231 cells via PP2A-dependent AKT pathway. Med Oncol. 2016;33(4):33. doi: 10.1007/s12032-016-0747-7.CrossRefPubMedGoogle Scholar
  57. 57.
    Hales EC, Orr SM, Larson Gedman A, Taub JW, Matherly LH. Notch1 receptor regulates AKT protein activation loop (Thr308) dephosphorylation through modulation of the PP2A phosphatase in phosphatase and tensin homolog (PTEN)-null T-cell acute lymphoblastic leukemia cells. J Biol Chem. 2013;288(31):22836–48. doi: 10.1074/jbc.M113.451625.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Zhang W, Grivennikov SI. Top Notch cancer stem cells by paracrine NF-kappaB signaling in breast cancer. Breast Cancer Res: BCR. 2013;15(5):316. doi: 10.1186/bcr3565.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Zhao F, Li L, Guan L, Yang H, Wu C, Liu Y. Roles for GP IIb/IIIa and alphavbeta3 integrins in MDA-MB-231 cell invasion and shear flow-induced cancer cell mechanotransduction. Cancer Lett. 2014;344(1):62–73. doi: 10.1016/j.canlet.2013.10.019.CrossRefPubMedGoogle Scholar
  60. 60.
    Giancotti FG, Ruoslahti E. Integrin signaling. Science. 1999;285(5430):1028–32.CrossRefPubMedGoogle Scholar
  61. 61.
    Ruoslahti E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol. 1996;12:697–715. doi: 10.1146/annurev.cellbio.12.1.697.CrossRefPubMedGoogle Scholar
  62. 62.
    Deford P, Brown K, Richards RL, King A, Newburn K, Westover K, et al. MAGP2 controls Notch via interactions with RGD binding integrins: Identification of a novel ECM-integrin-Notch signaling axis. Exp Cell Res. 2016;341(1):84–91. doi: 10.1016/j.yexcr.2016.01.011.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Hodkinson PS, Elliott PA, Lad Y, McHugh BJ, MacKinnon AC, Haslett C, et al. Mammalian NOTCH-1 activates beta1 integrins via the small GTPase R-Ras. J Biol Chem. 2007;282(39):28991–9001. doi: 10.1074/jbc.M703601200.CrossRefPubMedGoogle Scholar
  64. 64.
    Hodkinson PS, Elliott PA, Lad Y, McHugh BJ, MacKinnon AC, Haslett C, et al. Mammalian NOTCH-1 activates beta1 integrins via the small GTPase R-Ras. J Biol Chem. 2007;282(39):28991–9001. doi: 10.1074/jbc.M703601200.CrossRefPubMedGoogle Scholar
  65. 65.
    Kim KH, Chen CC, Alpini G, Lau LF. CCN1 induces hepatic ductular reaction through integrin alphavbeta(5)-mediated activation of NF-kappaB. J Clin Invest. 2015;125(5):1886–900. doi: 10.1172/JCI79327.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Haque I, De A, Majumder M, Mehta S, McGregor D, Banerjee SK, et al. The matricellular protein CCN1/Cyr61 is a critical regulator of Sonic Hedgehog in pancreatic carcinogenesis. J Biol Chem. 2012;287(46):38569–79. doi: 10.1074/jbc.M112.389064.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Legate KR, Montanez E, Kudlacek O, Fassler R. ILK, PINCH and parvin: the tIPP of integrin signalling. Nat Rev Mol Cell Biol. 2006;7(1):20–31. doi: 10.1038/nrm1789.CrossRefPubMedGoogle Scholar
  68. 68.
    Hsu EC, Kulp SK, Huang HL, Tu HJ, Chao MW, Tseng YC, et al. Integrin-linked kinase as a novel molecular switch of the IL-6-NF-kappaB signaling loop in breast cancer. Carcinogenesis. 2016;37(4):430–42. doi: 10.1093/carcin/bgw020.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Sethi N, Dai X, Winter CG, Kang Y. Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging Notch signaling in bone cells. Cancer Cell. 2011;19(2):192–205. doi: 10.1016/j.ccr.2010.12.022.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Hsu EC, Kulp SK, Huang HL, Tu HJ, Salunke SB, Sullivan NJ, et al. Function of integrin-linked kinase in modulating the stemness of IL-6-abundant breast cancer cells by regulating gamma-secretase-mediated Notch1 activation in caveolae. Neoplasia. 2015;17(6):497–508. doi: 10.1016/j.neo.2015.06.001.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Sansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taffurelli M, et al. IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest. 2007;117(12):3988–4002. doi: 10.1172/JCI32533.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Tahir SA, Yang G, Goltsov A, Song KD, Ren C, Wang J, et al. Caveolin-1-LRP6 signaling module stimulates aerobic glycolysis in prostate cancer. Cancer Res. 2013;73(6):1900–11. doi: 10.1158/0008-5472.CAN-12-3040.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Lee C, Lee C, Lee S, Siu A, Ramos DM. The cytoplasmic extension of the integrin beta6 subunit regulates epithelial-to-mesenchymal transition. Anticancer Res. 2014;34(2):659–64.PubMedGoogle Scholar
  74. 74.
    Ding Y, Shen Y. Notch increased vitronection adhesion protects myeloma cells from drug induced apoptosis. Biochem Biophys Res Commun. 2015;467(4):717–22. doi: 10.1016/j.bbrc.2015.10.076.CrossRefPubMedGoogle Scholar
  75. 75.
    Masia A, Almazan-Moga A, Velasco P, Reventos J, Toran N, Sanchez de Toledo J, et al. Notch-mediated induction of N-cadherin and alpha9-integrin confers higher invasive phenotype on rhabdomyosarcoma cells. Br J Cancer. 2012;107(8):1374–83. doi: 10.1038/bjc.2012.411.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11(9):597–610. doi: 10.1038/nrg2843.PubMedGoogle Scholar
  77. 77.
    Sun DW, Zhang HD, Mao L, Mao CF, Chen W, Cui M, et al. Luteolin inhibits breast cancer development and progression in vitro and in vivo by suppressing Notch signaling and regulating MiRNAs. Cell Physiol Biochem. 2015;37(5):1693–711. doi: 10.1159/000438535.CrossRefPubMedGoogle Scholar
  78. 78.
    Wang Z, Li Y, Kong D, Ahmad A, Banerjee S, Sarkar FH. Cross-talk between miRNA and Notch signaling pathways in tumor development and progression. Cancer Lett. 2010;292(2):141–8. doi: 10.1016/j.canlet.2009.11.012.CrossRefPubMedGoogle Scholar
  79. 79.
    Mansour MR, Sanda T, Lawton LN, Li X, Kreslavsky T, Novina CD, et al. The TAL1 complex targets the FBXW7 tumor suppressor by activating miR-223 in human T cell acute lymphoblastic leukemia. J Exp Med. 2013;210(8):1545–57. doi: 10.1084/jem.20122516.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Dorhoi A, Iannaccone M, Farinacci M, Fae KC, Schreiber J, Moura-Alves P, et al. MicroRNA-223 controls susceptibility to tuberculosis by regulating lung neutrophil recruitment. J Clin Invest. 2013;123(11):4836–48. doi: 10.1172/JCI67604.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Barbarulo A, Grazioli P, Campese AF, Bellavia D, Di Mario G, Pelullo M, et al. Notch3 and canonical NF-kappaB signaling pathways cooperatively regulate Foxp3 transcription. J Immunol. 2011;186(11):6199–206. doi: 10.4049/jimmunol.1002136.CrossRefPubMedGoogle Scholar
  82. 82.
    Kumar V, Palermo R, Talora C, Campese AF, Checquolo S, Bellavia D, et al. Notch and NF-kB signaling pathways regulate miR-223/FBXW7 axis in T-cell acute lymphoblastic leukemia. Leukemia. 2014;28(12):2324–35. doi: 10.1038/leu.2014.133.CrossRefPubMedGoogle Scholar
  83. 83.
    Vandewalle C, Van Roy F, Berx G. The role of the ZEB family of transcription factors in development and disease. Cell Mol Life Sci: CMLS. 2009;66(5):773–87. doi: 10.1007/s00018-008-8465-8.CrossRefPubMedGoogle Scholar
  84. 84.
    Brabletz S, Bajdak K, Meidhof S, Burk U, Niedermann G, Firat E, et al. The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO J. 2011;30(4):770–82. doi: 10.1038/emboj.2010.349.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Yang Y, Ahn YH, Gibbons DL, Zang Y, Lin W, Thilaganathan N, et al. The Notch ligand Jagged2 promotes lung adenocarcinoma metastasis through a miR-200-dependent pathway in mice. J Clin Invest. 2011;121(4):1373–85. doi: 10.1172/JCI42579.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Ohashi S, Natsuizaka M, Naganuma S, Kagawa S, Kimura S, Itoh H, et al. A NOTCH3-mediated squamous cell differentiation program limits expansion of EMT-competent cells that express the ZEB transcription factors. Cancer Res. 2011;71(21):6836–47. doi: 10.1158/0008-5472.CAN-11-0846.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Shimono Y, Mukohyama J, Nakamura S, Minami H. MicroRNA regulation of human breast cancer stem cells. J Clin Med. 2015;. doi: 10.3390/jcm5010002.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Xu YF, Hannafon BN, Ding WQ. microRNA regulation of human pancreatic cancer stem cells. Stem Cell Investig. 2017;4:5. doi: 10.21037/sci.2017.01.01.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Chen J, Zhang H, Chen Y, Qiao G, Jiang W, Ni P, et al. miR-598 inhibits metastasis in colorectal cancer by suppressing JAG1/Notch2 pathway stimulating EMT. Exp Cell Res. 2017;352(1):104–12. doi: 10.1016/j.yexcr.2017.01.022.CrossRefPubMedGoogle Scholar
  90. 90.
    Wang XW, Xi XQ, Wu J, Wan YY, Hui HX, Cao XF. MicroRNA-206 attenuates tumor proliferation and migration involving the downregulation of NOTCH3 in colorectal cancer. Oncol Rep. 2015;33(3):1402–10. doi: 10.3892/or.2015.3731.CrossRefPubMedGoogle Scholar
  91. 91.
    Rizzo P, Miao H, D’Souza G, Osipo C, Song LL, Yun J, et al. Cross-talk between Notch and the estrogen receptor in breast cancer suggests novel therapeutic approaches. Cancer Res. 2008;68(13):5226–35. doi: 10.1158/0008-5472.CAN-07-5744.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Clementz AG, Rogowski A, Pandya K, Miele L, Osipo C. NOTCH-1 and NOTCH-4 are novel gene targets of PEA3 in breast cancer: novel therapeutic implications. Breast Cancer Res: BCR. 2011;13(3):R63. doi: 10.1186/bcr2900.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Stoeck A, Lejnine S, Truong A, Pan L, Wang H, Zang C, et al. Discovery of biomarkers predictive of GSI response in triple-negative breast cancer and adenoid cystic carcinoma. Cancer Discov. 2014;4(10):1154–67. doi: 10.1158/2159-8290.CD-13-0830.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Samon JB, Castillo-Martin M, Hadler M, Ambesi-Impiobato A, Paietta E, Racevskis J, et al. Preclinical analysis of the gamma-secretase inhibitor PF-03084014 in combination with glucocorticoids in T-cell acute lymphoblastic leukemia. Mol Cancer Ther. 2012;11(7):1565–75. doi: 10.1158/1535-7163.MCT-11-0938.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Bhagat TD, Zou Y, Huang S, Park J, Palmer MB, Hu C, et al. Notch pathway is activated via genetic and epigenetic alterations and is a therapeutic target in clear cell renal cancer. J Biol Chem. 2017;292(3):837–46. doi: 10.1074/jbc.M116.745208.CrossRefPubMedGoogle Scholar
  96. 96.
    Notch inhibitor shows modest efficacy. Cancer Discov. 2017;7(2):OF3. doi: 10.1158/2159-8290.CD-NB2016-159.
  97. 97.
    Gavai AV, Quesnelle C, Norris D, Han WC, Gill P, Shan W, et al. Discovery of clinical candidate BMS-906024: a potent pan-Notch inhibitor for the treatment of leukemia and solid tumors. ACS Med Chem Lett. 2015;6(5):523–7. doi: 10.1021/acsmedchemlett.5b00001.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Knoechel B, Bhatt A, Pan L, Pedamallu CS, Severson E, Gutierrez A, et al. Complete hematologic response of early T-cell progenitor acute lymphoblastic leukemia to the gamma-secretase inhibitor BMS-906024: genetic and epigenetic findings in an outlier case. Cold Spring Harb Mol Case Stud. 2015;1(1):a000539. doi: 10.1101/mcs.a000539.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Biophysics, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  2. 2.Center for Information in BiologyUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  3. 3.Department of Physiology, West China School of Preclinical and Forensic MedicineSichuan UniversityChengduPeople’s Republic of China
  4. 4.Neuroscience and Metabolism Research, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations