Skip to main content

Advertisement

Log in

GPCR48/LGR4 promotes tumorigenesis of prostate cancer via PI3K/Akt signaling pathway

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

G-protein-coupled receptor (GPCR) 48, also known as leucine-rich repeat-containing G-protein-coupled receptor (LGR) 4, is an orphan receptor belonging to the GPCR superfamily, which plays an important role in the development of various organs and multiple cancers. However, the function of GPCR48/LGR4 in prostate cancer has not been fully investigated. Herein, GPCR48/LGR4 was overexpressed and silenced in prostate cancer cells via plasmid and shRNA transfection, respectively. The expression of GPCR48/LGR4 in mRNA and protein levels was analyzed using RT-qPCR and Western blotting, respectively. Subsequently, we demonstrated the effects of GPCR48/LGR4 on the migration, invasion, proliferation and apoptosis of prostate cancer cells, including Du145 and PC-3 cells. Next, we investigated the relationship between GPCR48/LGR4 and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt signaling pathway. The results showed that the overexpression of GPCR48/LGR4 was associated with the up-regulation of Akt, a key effector of PI3K/Akt signaling pathway, which meantime up-regulated the expression of mammalian target of rapamycin (mTOR) and glycogen synthase kinase 3β (GSK-3β), while down-regulated forkhead box, class O (FOXO), all of whom are the downstream targets of PI3K/Akt signaling pathway. Hence, the results suggested that GPCR48/LGR4 may regulate prostate cancer cells and tumor growth via the PI3K/Akt signaling pathway and could provide a better therapeutic target for the diagnosis and treatment of prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tenesa A, Dunlop MG. New insights into the aetiology of colorectal cancer from genome-wide association studies. Nat Rev Genet. 2009;10:353–8.

    Article  CAS  PubMed  Google Scholar 

  2. Narita S, Tsuchiya N, Habuchi T. Treatment for high-risk localized prostate cancer. Nihon Rinsho. 2014;72:2212–6.

    PubMed  Google Scholar 

  3. Ghosh D, Yu H, Tan XF, Lim TK, Zubaidah RM, Tan HT, et al. Identification of key players for colorectal cancer metastasis by iTRAQ quantitative proteomics profiling of isogenic SW480 and SW620 cell lines. J Proteome Res. 2011;10:4373–87.

    Article  CAS  PubMed  Google Scholar 

  4. O’Neill PR, Giri L, Karunarathne WK, Patel AK, Venkatesh KV, Gautam N. The structure of dynamic GPCR signaling networks. Wiley Interdiscip Rev Syst Biol Med. 2014;6:115–23.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Zhu YB, Xu L, Chen M, Ma HN, Lou F. GPR48 promotes multiple cancer cell proliferation via activation of Wnt signaling. Asian Pac J Cancer Prev. 2013;14:4775–8.

    Article  PubMed  Google Scholar 

  6. Luo W, Rodriguez M, Valdez JM, Zhu X, Tan K, Li D, et al. Lgr4 is a key regulator of prostate development and prostate stem cell differentiation. Stem Cells. 2013;31:2492–505.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Luo J, Zhou W, Zhou X, Li D, Weng J, Yi Z, et al. Regulation of bone formation and remodeling by G-protein-coupled receptor 48. Development. 2009;136:2747–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Kudo M, Chen T, Nakabayashi K, Hsu SY, Hsueh AJ. The nematode leucine-rich repeat-containing, G protein-coupled receptor (LGR) protein homologous to vertebrate gonadotropin and thyrotropin receptors is constitutively active in mammalian cells. Mol Endocrinol. 2000;14:272–84.

    Article  CAS  PubMed  Google Scholar 

  9. Mendive F, Laurent P, Van Schoore G, Skarnes W, Pochet R, Vassart G. Defective postnatal development of the male reproductive tract in LGR4 knockout mice. Dev Biol. 2006;290:421–34.

    Article  CAS  PubMed  Google Scholar 

  10. Yamashita R, Takegawa Y, Sakumoto M, Nakahara M, Kawazu H, Hoshii T, et al. Defective development of the gall bladder and cystic duct in Lgr4-hypomorphic mice. Dev Dyn. 2009;238:993–1000.

    Article  CAS  PubMed  Google Scholar 

  11. Weng J, Luo J, Cheng X, Jin C, Zhou X, Qu J, et al. Deletion of G protein-coupled receptor 48 leads to ocular anterior segment dysgenesis (ASD) through down-regulation of Pitx2. Proc Natl Acad Sci USA. 2008;105:6081–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Daaka Y. G proteins in cancer: the prostate cancer paradigm. Sci STKE. 2004;2004:re2.

  13. Dorsam RT, Gutkind JS. G-protein-coupled receptors and cancer. Nat Rev Cancer. 2007;7:79–94.

    Article  CAS  PubMed  Google Scholar 

  14. Rosenberg J, Small EJ. Prostate cancer update. Curr Opin Oncol. 2003;15:217–21.

    Article  CAS  PubMed  Google Scholar 

  15. Harada M, Noguchi M, Itoh K. Target molecules in specific immunotherapy against prostate cancer. Int J Clin Oncol. 2003;8:193–9.

    Article  CAS  PubMed  Google Scholar 

  16. Wu J, Xie N, Xie K, Zeng J, Cheng L, Lei Y, et al. GPR48, a poor prognostic factor, promotes tumor metastasis and activates β-catenin/TCF signaling in colorectal cancer. Carcinogenesis. 2013;34:2861–9.

    Article  CAS  PubMed  Google Scholar 

  17. Hsu SY, Liang SG, Hsueh AJ. Characterization of two LGR genes homologous to gonadotropin and thyrotropin receptors with extracellular leucine-rich repeats and a G protein-coupled, seven-transmembrane region. Mol Endocrinol. 1998;12:1830–45.

    Article  CAS  PubMed  Google Scholar 

  18. Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, Gonzalez-Baron M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 2004;30:193–204.

    Article  PubMed  Google Scholar 

  19. Kasbohm EA, Guo R, Yowell CW, Bagchi G, Kelly P, Arora P, et al. Androgen receptor activation by G(s) signaling in prostate cancer cells. J Biol Chem. 2005;280:11583–9.

    Article  CAS  PubMed  Google Scholar 

  20. Dai J, Shen R, Sumitomo M, Stahl R, Navarro D, Gershengorn MC, et al. Synergistic activation of the androgen receptor by bombesin and low-dose androgen. Clin Cancer Res. 2002;8:2399–405.

    CAS  PubMed  Google Scholar 

  21. Lee LF, Guan J, Qiu Y, Kung HJ. Neuropeptide-induced androgen independence in prostate cancer cells: roles of nonreceptor tyrosine kinases Etk/Bmx, Src, and focal adhesion kinase. Mol Cell Biol. 2001;21:8385–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Xie Y, Wolff DW, Lin MF, Tu Y. Vasoactive intestinal peptide transactivates the androgen receptor through a protein kinase A-dependent extracellular signal-regulated kinase pathway in prostate cancer LNCaP cells. Mol Pharmacol. 2007;72:73–85.

    Article  CAS  PubMed  Google Scholar 

  23. Nelson JB. Endothelin inhibition: novel therapy for prostate cancer. J Urol. 2003;170:S65–7 discussion S7–8.

    Article  CAS  PubMed  Google Scholar 

  24. Growcott JW. Preclinical anticancer activity of the specific endothelin A receptor antagonist ZD4054. Anticancer Drugs. 2009;20:83–8.

    Article  CAS  PubMed  Google Scholar 

  25. Takahashi H, Ishii H, Nishida N, Takemasa I, Mizushima T, Ikeda M, et al. Significance of Lgr5(+ve) cancer stem cells in the colon and rectum. Ann Surg Oncol. 2011;18:1166–74.

    Article  PubMed  Google Scholar 

  26. Fan XS, Wu HY, Yu HP, Zhou Q, Zhang YF, Huang Q. Expression of Lgr5 in human colorectal carcinogenesis and its potential correlation with β-catenin. Int J Colorectal Dis. 2010;25:583–90.

    Article  PubMed  Google Scholar 

  27. Steffen JS, Simon E, Warneke V, Balschun K, Ebert M, Rocken C. LGR4 and LGR6 are differentially expressed and of putative tumor biological significance in gastric carcinoma. Virchows Arch. 2012;461:355–65.

    Article  CAS  PubMed  Google Scholar 

  28. Gao Y, Kitagawa K, Hiramatsu Y, Kikuchi H, Isobe T, Shimada M, et al. Up-regulation of GPR48 induced by down-regulation of p27Kip1 enhances carcinoma cell invasiveness and metastasis. Cancer Res. 2006;66:11623–31.

    Article  CAS  PubMed  Google Scholar 

  29. Polivka J Jr, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther. 2014;142:164–75.

    Article  CAS  PubMed  Google Scholar 

  30. Sabbah DA, Brattain MG, Zhong H. Dual inhibitors of PI3K/mTOR or mTOR-selective inhibitors: which way shall we go? Curr Med Chem. 2011;18:5528–44.

    Article  CAS  PubMed  Google Scholar 

  31. Jiang K, Zhong B, Ritchey C, Gilvary DL, Hong-Geller E, Wei S, et al. Regulation of Akt-dependent cell survival by Syk and Rac. Blood. 2003;101:236–44.

    Article  CAS  PubMed  Google Scholar 

  32. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149:274–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Gupta C, Kaur J, Tikoo K. Regulation of MDA-MB-231 cell proliferation by GSK-3β involves epigenetic modifications under high glucose conditions. Exp Cell Res. 2014;324:75–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

None.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsong Zhang.

Additional information

Fang Liang and Junmin Yue have contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, F., Yue, J., Wang, J. et al. GPCR48/LGR4 promotes tumorigenesis of prostate cancer via PI3K/Akt signaling pathway. Med Oncol 32, 49 (2015). https://doi.org/10.1007/s12032-015-0486-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-015-0486-1

Keywords

Navigation