Skip to main content

Advertisement

Log in

Evaluating Gene Expression and Methylation Profiles of TCF4, MBP, and EGR1 in Peripheral Blood of Drug-Free Patients with Schizophrenia: Correlations with Psychopathology, Intelligence, and Cognitive Impairment

  • Research
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Discovery and validation of new, reliable diagnostic and predictive biomarkers for schizophrenia (SCZ) are an ongoing effort. Here, we assessed the mRNA expression and DNA methylation of the TCF4, MBP, and EGR1 genes in the blood of patients with SCZ and evaluated their relationships to psychopathology and cognitive impairments. Quantitative real-time PCR and quantitative methylation-specific PCR methods were used to assess the expression level and promoter DNA methylation status of these genes in 70 drug-free SCZ patients and 72 healthy controls. The correlation of molecular changes with psychopathology and cognitive performance of participants was evaluated. We observed downregulation of TCF4 and upregulation of MBP mRNA levels in SCZ cases, relative to controls in our study. DNA methylation status at the promoter region of TCF4 demonstrated an altered pattern in SCZ as well. Additionally, TCF4 mRNA levels were inversely correlated with PANSS and Stroop total errors and positively correlated with WAIS total score and working memory, consistent with previous studies by our group. In contrast, MBP mRNA level was significantly positively correlated with PANSS and Stroop total errors and inversely correlated with WAIS total score and working memory. These epigenetic and expression signatures can help to assemble a peripheral biomarker-based diagnostic panel for SCZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All raw data are available upon request from the corresponding authors.

References

  • Abdolmaleky HM, Pajouhanfar S, Faghankhani M, Joghataei MT, Mostafavi A, Thiagalingam S (2015) Antipsychotic drugs attenuate aberrant DNA methylation of DTNBP1 (dysbindin) promoter in saliva and post-mortem brain of patients with schizophrenia and psychotic bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 168:687–696

    Article  CAS  PubMed  Google Scholar 

  • Alizadeh F, Tavakkoly-Bazzaz J, Bozorgmehr A, Azarnezhad AA, Tabrizi M, Shahsavand Ananloo E (2017) Association of transcription factor 4 (TCF4) gene mRNA level with schizophrenia, its psychopathology, intelligence and cognitive impairments. J Neurogenet 31(4):344–351

    Article  CAS  PubMed  Google Scholar 

  • Baruch K, Silberberg G, Aviv A, Shamir E, Bening-Abu-Shach U, Baruch Y, Darvasi A, Navon R (2009) Association between golli-MBP and schizophrenia in the Jewish Ashkenazi population: are regulatory regions involved? Int J Neuropsychopharmacol 12(7):885–894

    Article  CAS  PubMed  Google Scholar 

  • Brzózka MM, Radyushkin K, Wichert SP, Ehrenreich H, Rossner MJ (2010) Cognitive and sensorimotor gating impairments in transgenic mice overexpressing the schizophrenia susceptibility gene Tcf4 in the brain. Biol Psychiatry 68(1):33–40

    Article  PubMed  Google Scholar 

  • Cattane N, Minelli A, Milanesi E, Maj C, Bignotti S, Bortolomasi M, Chiavetto LB, Gennarelli M (2015) Altered gene expression in schizophrenia: findings from transcriptional signatures in fibroblasts and blood. PLoS ONE 10(2):e0116686

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Rozario M, Zhang T, Waddell EA, Zhang Y, Sahin C, Sharoni M, Hu T, Nayal M, Kutty K, Liebl F, Hu W (2016) Type I bHLH proteins daughterless and Tcf4 restrict neurite branching and synapse formation by repressing neurexin in postmitotic neurons. Cell Rep 15(2):386–397

    Article  PubMed  PubMed Central  Google Scholar 

  • de Witte LD, Wang Z, Snijders GL, Mendelev N, Liu Q, Sneeboer MA, Boks MP, Ge Y, Haghighi F (2022) Contribution of age, brain region, mood disorder pathology, and interindividual factors on the methylome of human microglia. Biol Psychiatry 91(6):572–581

    Article  PubMed  Google Scholar 

  • Dhar GA, Saha S, Mitra P, Nag Chaudhuri R (2021) DNA methylation and regulation of gene expression: guardian of our health. Nucleus 64:259–270

    Article  CAS  Google Scholar 

  • Du Y, Yu Y, Hu Y, Li XW, Wei ZX, Pan RY, Li XS, Zheng GE, Qin XY, Liu QS, Cheng Y (2019) Genome-wide, integrative analysis implicates exosome-derived microRNA dysregulation in schizophrenia. Schizophr Bull 45(6):1257–1266

    Article  PubMed  PubMed Central  Google Scholar 

  • Du Y, Chen L, Li XS, Li XL, Xu XD, Tai SB, Yang GL, Tang Q, Liu H, Liu SH, Zhang SY (2021) Metabolomic identification of exosome-derived biomarkers for schizophrenia: a large multicenter study. Schizophr Bull 47(3):615–623

    Article  PubMed  Google Scholar 

  • Dubonyte U, Asenjo-Martinez A, Werge T, Lage K, Kirkeby A (2022) Current advancements of modelling schizophrenia using patient-derived induced pluripotent stem cells. Acta Neuropathol Commun 10(1):1–20

    Article  Google Scholar 

  • Duclot F, Kabbaj M (2017) The role of early growth response 1 (EGR1) in brain plasticity and neuropsychiatric disorders. Front Behav Neurosci 11:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Forrest M, Chapman RM, Doyle AM, Tinsley CL, Waite A, Blake DJ (2012) Functional analysis of TCF4 missense mutations that cause Pitt-Hopkins syndrome. Hum Mutat 33(12):1676–1686

    Article  CAS  PubMed  Google Scholar 

  • Gejman PV, Sanders AR, Duan J (2010) The role of genetics in the etiology of schizophrenia. Psychiatr Clin North Am 33(1):35–66

    Article  PubMed  PubMed Central  Google Scholar 

  • Gouvêa-Junqueira D, Falvella AC, Antunes AS, Seabra G, Brandão-Teles C, Martins-de-Souza D, Crunfli F (2020) Novel treatment strategies targeting myelin and oligodendrocyte dysfunction in schizophrenia. Front Psychiatry 11:379

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez-Fernández A, González-Pinto A, Vega P, Barbeito S, Matute C (2010) Expression of oligodendrocyte and myelin genes is not altered in peripheral blood cells of patients with first-episode schizophrenia and bipolar disorder. Bipolar Disord 12(1):107–109

    Article  PubMed  Google Scholar 

  • Hendrickx A, Pierrot N, Tasiaux B, Schakman O, Kienlen-Campard P, De Smet C, Octave JN (2014) Epigenetic regulations of immediate early genes expression involved in memory formation by the amyloid precursor protein of Alzheimer disease. PLoS ONE 9(6):e99467

    Article  PubMed  PubMed Central  Google Scholar 

  • Hilker R, Helenius D, Fagerlund B, Skytthe A, Christensen K, Werge TM, Nordentoft M, Glenthøj B (2018) Heritability of schizophrenia and schizophrenia spectrum based on the nationwide Danish twin register. Biol Psychiatry 83(6):492–498

    Article  PubMed  Google Scholar 

  • Hu TM, Chen SJ, Hsu SH, Cheng MC (2019) Functional analyses and effect of DNA methylation on the EGR1 gene in patients with schizophrenia. Psychiatry Res 275:276–282

    Article  CAS  PubMed  Google Scholar 

  • Jeppesen DK, Zhang Q, Franklin JL, Coffey RJ (2023) Extracellular vesicles and nanoparticles: emerging complexities. Trends Cell Biol 33(8):667–681

  • Kinoshita M, Numata S, Tajima A, Shimodera S, Ono S, Imamura A, Iga JI, Watanabe S, Kikuchi K, Kubo H, Nakataki M (2013) DNA methylation signatures of peripheral leukocytes in schizophrenia. Neuromolecular Med 15(1):95–101

    Article  CAS  PubMed  Google Scholar 

  • Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18(11):1427–1431

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Li S, Dupuy A, Mai HL, Sailliet N, Logé C, Robert JM, Brouard S (2021) Exosomes as new biomarkers and drug delivery tools for the prevention and treatment of various diseases: current perspectives. Int J Mol Sci 22(15):7763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinsen V, Kursula P (2022) Multiple sclerosis and myelin basic protein: insights into protein disorder and disease. Amino Acids 54(1):99–109

    Article  CAS  PubMed  Google Scholar 

  • Marty MC, Alliot F, Rutin J, Fritz R, Trisler D, Pessac B (2002) The myelin basic protein gene is expressed in differentiated blood cell lineages and in hemopoietic progenitors. Proc Natl Acad Sci 99(13):8856–8861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16(3):1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mistry M, Gillis J, Pavlidis P (2013) Genome-wide expression profiling of schizophrenia using a large combined cohort. Mol Psychiatry 18(2):215–225

    Article  CAS  PubMed  Google Scholar 

  • Müller N (2018) Inflammation in schizophrenia: pathogenetic aspects and therapeutic considerations. Schizophr Bull 44(5):973–982

    Article  PubMed  PubMed Central  Google Scholar 

  • Ota VK, Noto C, Santoro ML, Spindola LM, Gouvea ES, Carvalho CM, Santos CM, Xavier G, Higuchi CH, Yonamine C, Moretti PN (2015) Increased expression of NDEL1 and MBP genes in the peripheral blood of antipsychotic-naïve patients with first-episode psychosis. Eur Neuropsychopharmacol 25(12):2416–2425

    Article  CAS  PubMed  Google Scholar 

  • Papes F, Camargo AP, de Souza JS, Carvalho VM, Szeto RA, LaMontagne E, Teixeira JR, Avansini SH, Sánchez-Sánchez SM, Nakahara TS, Santo CN (2022) Transcription factor 4 loss-of-function is associated with deficits in progenitor proliferation and cortical neuron content. Nat Commun 13(1):2387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Périer RC, Praz V, Junier T, Bonnard C, Bucher P (2000) The eukaryotic promoter database (EPD). Nucleic Acids Res 28(1):302–303

    Article  PubMed  PubMed Central  Google Scholar 

  • Quednow BB, Brzózka MM, Rossner MJ (2014) Transcription factor 4 (TCF4) and schizophrenia: integrating the animal and the human perspective. Cell Mol Life Sci 71(15):2815–2835

    Article  CAS  PubMed  Google Scholar 

  • Ramaker RC, Bowling KM, Lasseigne BN, Hagenauer MH, Hardigan AA, Davis NS, Gertz J, Cartagena PM, Walsh DM, Vawter MP, Jones EG (2017) Post-mortem molecular profiling of three psychiatric disorders. Genome Med 9(1):1–2

    Article  Google Scholar 

  • Rollins B, Martin MV, Morgan L, Vawter MP. Analysis of whole genome biomarker expression in blood and brain (2010) Am J Med Genet B Neuropsychiatr Genet 153(4):919–936.

  • Sharma K, Singh J, Pillai PP, Frost EE (2015) Involvement of MeCP2 in regulation of myelin-related gene expression in cultured rat oligodendrocytes. J Mol Neurosci 57(2):176–184

    Article  CAS  PubMed  Google Scholar 

  • Sharma K, Singh J, Pillai PP (2018) MeCP2 differentially regulate the myelin MBP and PLP protein expression in oligodendrocytes and C6 glioma. J Mol Neurosci 65(3):343–350

    Article  CAS  PubMed  Google Scholar 

  • Slot LA, Lestienne F, Grevoz-Barret C, Newman-Tancredi A, Cussac D (2009) F15063, a potential antipsychotic with dopamine D2/D3 receptor antagonist and 5-HT1A receptor agonist properties: influence on immediate-early gene expression in rat prefrontal cortex and striatum. Eur J Pharmacol 620(1–3):27–35

    Article  Google Scholar 

  • Southwood CM, Lipovich L, Gow A (2012) Tissue-restricted transcription from a conserved intragenic CpG island in the Klf1 gene in mice. Biol Reprod 87(5):108–111

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun ZY, Gu LH, Ma DL, Wang MY, Yang CC, Zhang L, Li XM, Zhang JW, Li L (2021) Behavioral and neurobiological changes in a novel mouse model of schizophrenia induced by the combination of cuprizone and MK-801. Brain Res Bull 174:141–152

    Article  CAS  PubMed  Google Scholar 

  • Teixeira JR, Szeto RA, Carvalho VM, Muotri AR, Papes F (2021) Transcription factor 4 and its association with psychiatric disorders. Transl Psychiatry 11(1):19

    Article  PubMed  PubMed Central  Google Scholar 

  • Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB, Starkey M, Webster MJ, Yolken RH, Bahn S (2003) Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 362(9386):798–805

    Article  CAS  PubMed  Google Scholar 

  • Tylee DS, Kawaguchi DM, Glatt SJ (2013) On the outside, looking in: a review and evaluation of the comparability of blood and brain “‐omes”. Am J Med Genet B Neuropsychiatr Genet 162(7):595–603

  • Valdés-Tovar M, Rodríguez-Ramírez AM, Rodríguez-Cárdenas L, Sotelo-Ramírez CE, Camarena B, Sanabrais-Jiménez MA, Solís-Chagoyán H, Argueta J, López-Riquelme GO (2022) Insights into myelin dysfunction in schizophrenia and bipolar disorder. World J Psychiatry 12(2):264

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagh VV, Vyas P, Agrawal S, Pachpor TA, Paralikar V, Khare SP (2021) Peripheral blood-based gene expression studies in schizophrenia: a systematic review. Front Genet 12:736483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weickert CS, Weickert TW, Pillai A, Buckley PF (2013) Biomarkers in schizophrenia: a brief conceptual consideration. Dis Markers 35(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  • Wockner LF, Noble EP, Lawford BR, Young RM, Morris CP, Whitehall VL, Voisey J (2014) Genome-wide DNA methylation analysis of human brain tissue from schizophrenia patients. Transl Psychiatry 4(1):e339–e339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodson CM, Kehn-Hall K (2022) Examining the role of EGR1 during viral infections. Front Microbiol 13:1020220

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia H, Jahr FM, Kim NK, Xie L, Shabalin AA, Bryois J, Sweet DH, Kronfol MM, Palasuberniam P, McRae M, Riley BP (2018) Building a schizophrenia genetic network: transcription factor 4 regulates genes involved in neuronal development and schizophrenia risk. Hum Mol Genet 27(18):3246–3256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H-C, Yang Du, Chen L, Yuan Z-Q, Cheng Y (2023) MicroRNA schizophrenia: etiology, biomarkers and therapeutic targets. Neurosci Biobehav Rev 146:105064

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank the staff of the Department of Genomic Psychiatry and Behavioral Genomics (DGPBG) at Roozbeh Hospital, School of Medicine, Tehran University of Medical Science (TUMS).

Funding

This study has been supported by the Tehran University of Medical Sciences under grant No. 32178.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Fatemeh Alizadeh. Methodology: Fatemeh Alizadeh, Fatemeh Yazarlou, Hamid Mostafavi Abdolmaleky, and Golshid Sanati. Investigation: Fatemeh Alizadeh, Habib Sadeghi Rad, and Mobina. TabibianWriting: Fatemeh Yazarlou, Asaad Azarnezhad, Fatemeh Alizadeh, and Leonard Lipovich. Critical review: Leonard Lipovich, Fatemeh Alizadeh, Fatemeh Yazarlou, and Hamid Mostafavi Abdolmaleky

Corresponding author

Correspondence to Fatemeh Alizadeh.

Ethics declarations

Ethical Approval

This study was approved by the Ethics Committee of Tehran University of Medical Sciences, Iran.

Consent to Participate

Informed consent forms were obtained from all individual participants included in the study.

Consent for Publication

The authors affirm that human research participants provided informed consent for the publication of their data.

Conflict of Interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazarlou, F., Tabibian, M., Azarnezhad, A. et al. Evaluating Gene Expression and Methylation Profiles of TCF4, MBP, and EGR1 in Peripheral Blood of Drug-Free Patients with Schizophrenia: Correlations with Psychopathology, Intelligence, and Cognitive Impairment. J Mol Neurosci 73, 738–750 (2023). https://doi.org/10.1007/s12031-023-02150-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-023-02150-x

Keywords

Navigation