Skip to main content

Advertisement

Log in

Transcription factor 4 (TCF4) and schizophrenia: integrating the animal and the human perspective

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Schizophrenia is a genetically complex disease considered to have a neurodevelopmental pathogenesis and defined by a broad spectrum of positive and negative symptoms as well as cognitive deficits. Recently, large genome-wide association studies have identified common alleles slightly increasing the risk for schizophrenia. Among the few schizophrenia-risk genes that have been consistently replicated is the basic Helix-Loop-Helix (bHLH) transcription factor 4 (TCF4). Haploinsufficiency of the TCF4 (formatting follows IUPAC nomenclature: TCF4 protein/protein function, Tcf4 rodent gene cDNA mRNA, TCF4 human gene cDNA mRNA) gene causes the Pitt-Hopkins syndrome—a neurodevelopmental disease characterized by severe mental retardation. Accordingly, Tcf4 null-mutant mice display developmental brain defects. TCF4-associated risk alleles are located in putative coding and non-coding regions of the gene. Hence, subtle changes at the level of gene expression might be relevant for the etiopathology of schizophrenia. Behavioural phenotypes obtained with a mouse model of slightly increased gene dosage and electrophysiological investigations with human risk-allele carriers revealed an overlapping spectrum of schizophrenia-relevant endophenotypes. Most prominently, early information processing and higher cognitive functions appear to be associated with TCF4 risk genotypes. Moreover, a recent human study unravelled gene × environment interactions between TCF4 risk alleles and smoking behaviour that were specifically associated with disrupted early information processing. Taken together, TCF4 is considered as an integrator (‘hub’) of several bHLH networks controlling critical steps of various developmental, and, possibly, plasticity-related transcriptional programs in the CNS and changes of TCF4 expression also appear to affect brain networks important for information processing. Consequently, these findings support the neurodevelopmental hypothesis of schizophrenia and provide a basis for identifying the underlying molecular mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Massari ME, Murre C (2000) Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol 20:429–440

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Murre C, Bain G, van Dijk MA et al (1994) Structure and function of helix-loop-helix proteins. Biochim Biophys Acta 1218:129–135

    CAS  PubMed  Google Scholar 

  3. Ferré-D’Amaré AR, Prendergast GC, Ziff EB, Burley SK (1993) Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 363:38–45

    PubMed  Google Scholar 

  4. Skinner MK, Rawls A, Wilson-Rawls J, Roalson EH (2010) Basic helix-loop-helix transcription factor gene family phylogenetics and nomenclature. Differentiation 80:1–8

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Bertrand N, Castro DS, Guillemot F (2002) Proneural genes and the specification of neural cell types. Nat Rev Neurosci 3:517–530

    CAS  PubMed  Google Scholar 

  6. Jones S (2004) An overview of the basic helix-loop-helix proteins. Genome Biol 5:226

    PubMed Central  PubMed  Google Scholar 

  7. Jin T, Liu L (2008) The Wnt signaling pathway effector TCF7L2 and type 2 diabetes mellitus. Mol Endocrinol 22:2383–2392

    CAS  PubMed  Google Scholar 

  8. Ephrussi A, Church GM, Tonegawa S, Gilbert W (1985) B lineage—specific interactions of an immunoglobulin enhancer with cellular factors in vivo. Science 227:134–140

    CAS  PubMed  Google Scholar 

  9. De Masi F, Grove CA, Vedenko A et al (2011) Using a structural and logics systems approach to infer bHLH-DNA binding specificity determinants. Nucleic Acids Res 39:4553–4563

    PubMed Central  PubMed  Google Scholar 

  10. Sepp M, Kannike K, Eesmaa A et al (2011) Functional diversity of human basic helix-loop-helix transcription factor TCF4 isoforms generated by alternative 5′ exon usage and splicing. PLoS ONE 6:e22138

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Sepp M, Pruunsild P, Timmusk T (2012) Pitt-Hopkins syndrome-associated mutations in TCF4 lead to variable impairment of the transcription factor function ranging from hypomorphic to dominant-negative effects. Hum Mol Genet 21:2873–2888

    CAS  PubMed  Google Scholar 

  12. Chiaramello A, Soosaar A, Neuman T, Zuber MX (1995) Differential expression and distinct DNA-binding specificity of ME1a and ME2 suggest a unique role during differentiation and neuronal plasticity. Brain Res Mol Brain Res 29:107–118

    CAS  PubMed  Google Scholar 

  13. Soosaar A, Chiaramello A, Zuber MX, Neuman T (1994) Expression of basic-helix-loop-helix transcription factor ME2 during brain development and in the regions of neuronal plasticity in the adult brain. Brain Res Mol Brain Res 25:176–180

    CAS  PubMed  Google Scholar 

  14. Zhuang Y, Kim CG, Bartelmez S et al (1992) Helix-loop-helix transcription factors E12 and E47 are not essential for skeletal or cardiac myogenesis, erythropoiesis, chondrogenesis, or neurogenesis. Proc Natl Acad Sci USA 89:12132–12136

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Zhuang Y, Barndt RJ, Pan L et al (1998) Functional replacement of the mouse E2A gene with a human HEB cDNA. Mol Cell Biol 18:3340–3349

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Caudy M, Vässin H, Brand M et al (1988) daughterless, a Drosophila gene essential for both neurogenesis and sex determination, has sequence similarities to myc and the achaete-scute complex. Cell 55:1061–1067

    CAS  PubMed  Google Scholar 

  17. Krause M, Park M, Zhang JM et al (1997) A C. elegans E/Daughterless bHLH protein marks neuronal but not striated muscle development. Development 124:2179–2189

    CAS  PubMed  Google Scholar 

  18. Portman DS, Emmons SW (2000) The basic helix-loop-helix transcription factors LIN-32 and HLH-2 function together in multiple steps of a C. elegans neuronal sublineage. Development 127:5415–5426

    CAS  PubMed  Google Scholar 

  19. Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium (2011) Genome-wide association study identifies five new schizophrenia loci. Nat Genet 43:969–976

    Google Scholar 

  20. Xiang X, Zhuang X, Ju S et al (2011) miR-155 promotes macroscopic tumor formation yet inhibits tumor dissemination from mammary fat pads to the lung by preventing EMT. Oncogene 30:3440–3453

    CAS  PubMed  Google Scholar 

  21. Li G, Luna C, Qiu J et al (2011) Role of miR-204 in the regulation of apoptosis, endoplasmic reticulum stress response, and inflammation in human trabecular meshwork cells. Invest Ophthalmol Vis Sci 52:2999–3007

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Kwon E, Wang W, Tsai L-H (2013) Validation of schizophrenia-associated genes CSMD1, C10orf26, CACNA1C and TCF4 as miR-137 targets. Mol Psychiatry 18(11–12):23

    Google Scholar 

  23. Navarrete K, Pedroso I, De Jong S et al (2013) TCF4 (e2-2; ITF2): a schizophrenia-associated gene with pleiotropic effects on human disease. Am J Med Genet B 162:1–16

    CAS  Google Scholar 

  24. Aronheim A, Shiran R, Rosen A, Walker MD (1993) The E2A gene product contains two separable and functionally distinct transcription activation domains. Proc Natl Acad Sci USA 90:8063–8067

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Quong MW, Massari ME, Zwart R, Murre C (1993) A new transcriptional-activation motif restricted to a class of helix-loop-helix proteins is functionally conserved in both yeast and mammalian cells. Mol Cell Biol 13:792–800

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Massari ME, Grant PA, Pray-Grant MG et al (1999) A conserved motif present in a class of helix-loop-helix proteins activates transcription by direct recruitment of the SAGA complex. Mol Cell 4:63–73

    CAS  PubMed  Google Scholar 

  27. Qiu Y, Sharma A, Stein R (1998) p300 mediates transcriptional stimulation by the basic helix-loop-helix activators of the insulin gene. Mol Cell Biol 18:2957–2964

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Loe-Mie Y, Lepagnol-Bestel A-M, Maussion G et al (2010) SMARCA2 and other genome-wide supported schizophrenia-associated genes: regulation by REST/NRSF, network organization and primate-specific evolution. Hum Mol Genet 19:2841–2857

    CAS  PubMed  Google Scholar 

  29. Forrest MP, Waite AJ, Martin-Rendon E, Blake DJ (2013) Knockdown of human TCF4 affects multiple signaling pathways involved in cell survival, epithelial to mesenchymal transition and neuronal differentiation. PLoS ONE 8:e73169

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Tamminga CA, Holcomb HH (2005) Phenotype of schizophrenia: a review and formulation. Mol Psychiatry 10:27–39

    CAS  PubMed  Google Scholar 

  31. Goldstein JM, Tsuang MT, Faraone SV (1989) Gender and schizophrenia: implications for understanding the heterogeneity of the illness. Psychiatry Res 28:243–253

    CAS  PubMed  Google Scholar 

  32. Faraone SV, Chen WJ, Goldstein JM, Tsuang MT (1994) Gender differences in age at onset of schizophrenia. Br J Psychiatry 164:625–629

    CAS  PubMed  Google Scholar 

  33. Bromet EJ, Fennig S (1999) Epidemiology and natural history of schizophrenia. Biol Psychiatry 46:871–881

    CAS  PubMed  Google Scholar 

  34. Insel TR (2010) Rethinking schizophrenia. Nature 468:187–193

    CAS  PubMed  Google Scholar 

  35. Van Os J, Kapur S (2009) Schizophrenia. Lancet 374:635–645

    PubMed  Google Scholar 

  36. Holzman PS, Matthysse S (1990) The genetics of schizophrenia: a review. Psychol Sci 1:279–286

    Google Scholar 

  37. McGue M, Gottesman II (1991) The genetic epidemiology of schizophrenia and the design of linkage studies. Eur Arch Psychiatry Clin Neurosci 240:174–181

    CAS  PubMed  Google Scholar 

  38. Harrison PJ, Owen MJ (2003) Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 361:417–419

    CAS  PubMed  Google Scholar 

  39. Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10:40–68 image 5

    CAS  PubMed  Google Scholar 

  40. Ng MYM, Levinson DF, Faraone SV et al (2009) Meta-analysis of 32 genome-wide linkage studies of schizophrenia. Mol Psychiatry 14:774–785

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Williams HJ, Moskvina V, Smith RL et al (2011) Association between TCF4 and schizophrenia does not exert its effect by common nonsynonymous variation or by influencing cis-acting regulation of mRNA expression in adult human brain. Am J Med Genet B 156B:781–784

    Google Scholar 

  42. Williams HJ, Owen MJ, O’Donovan MC (2009) Schizophrenia genetics: new insights from new approaches. Br Med Bull 91:61–74

    PubMed  Google Scholar 

  43. Sullivan PF, Daly MJ, O’Donovan M (2012) Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet 13:537–551

    CAS  PubMed  Google Scholar 

  44. Lee KW, Woon PS, Teo YY, Sim K (2012) Genome wide association studies (GWAS) and copy number variation (CNV) studies of the major psychoses: what have we learnt? Neurosci Biobehav Rev 36:556–571

    CAS  PubMed  Google Scholar 

  45. Harrison PJ (1999) The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122(Pt 4):593–624

    PubMed  Google Scholar 

  46. Harrison PJ (2004) The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology 174:151–162

    CAS  PubMed  Google Scholar 

  47. Jakob H, Beckmann H (1986) Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm 65:303–326

    CAS  PubMed  Google Scholar 

  48. Arnold SE, Hyman BT, Van Hoesen GW, Damasio AR (1991) Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch Gen Psychiatry 48:625–632

    CAS  PubMed  Google Scholar 

  49. Falkai P, Schneider-Axmann T, Honer WG (2000) Entorhinal cortex pre-alpha cell clusters in schizophrenia: quantitative evidence of a developmental abnormality. Biol Psychiatry 47:937–943

    CAS  PubMed  Google Scholar 

  50. Harrison PJ, Eastwood SL (2001) Neuropathological studies of synaptic connectivity in the hippocampal formation in schizophrenia. Hippocampus 11:508–519

    CAS  PubMed  Google Scholar 

  51. Honer WG, Young CE (2004) Presynaptic proteins and schizophrenia. Int Rev Neurobiol 59:175–199

    CAS  PubMed  Google Scholar 

  52. Lewis DA (2000) GABAergic local circuit neurons and prefrontal cortical dysfunction in schizophrenia. Brain Res Brain Res Rev 31:270–276

    CAS  PubMed  Google Scholar 

  53. Reynolds GP, Beasley CL, Zhang ZJ (2002) Understanding the neurotransmitter pathology of schizophrenia: selective deficits of subtypes of cortical GABAergic neurons. J Neural Transm 109:881–889

    CAS  PubMed  Google Scholar 

  54. Bertolino A, Weinberger DR (1999) Proton magnetic resonance spectroscopy in schizophrenia. Eur J Radiol 30:132–141

    CAS  PubMed  Google Scholar 

  55. Nudmamud S, Reynolds LM, Reynolds GP (2003) N-acetylaspartate and N-Acetylaspartylglutamate deficits in superior temporal cortex in schizophrenia and bipolar disorder: a postmortem study. Biol Psychiatry 53:1138–1141

    CAS  PubMed  Google Scholar 

  56. Weinberger DR, Berman KF, Suddath R, Torrey EF (1992) Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: a magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. Am J Psychiatry 149:890–897

    CAS  PubMed  Google Scholar 

  57. Friston KJ, Frith CD (1995) Schizophrenia: a disconnection syndrome? Clin Neurosci 3:89–97

    CAS  PubMed  Google Scholar 

  58. McGlashan TH, Hoffman RE (2000) Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Arch Gen Psychiatry 57:637–648

    CAS  PubMed  Google Scholar 

  59. Mirnics K, Middleton FA, Lewis DA, Levitt P (2001) Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci 24:479–486

    CAS  PubMed  Google Scholar 

  60. Frankle WG, Lerma J, Laruelle M (2003) The synaptic hypothesis of schizophrenia. Neuron 39:205–216

    CAS  PubMed  Google Scholar 

  61. Marenco S, Weinberger DR (2000) The neurodevelopmental hypothesis of schizophrenia: following a trail of evidence from cradle to grave. Dev Psychopathol 12:501–527

    CAS  PubMed  Google Scholar 

  62. Miyamoto S, LaMantia AS, Duncan GE et al (2003) Recent advances in the neurobiology of schizophrenia. Mol Interv 3:27–39

    PubMed  Google Scholar 

  63. Murray RM, O’Callaghan E, Castle DJ, Lewis SW (1992) A neurodevelopmental approach to the classification of schizophrenia. Schizophr Bull 18:319–332

    CAS  PubMed  Google Scholar 

  64. Maynard TM, Sikich L, Lieberman JA, LaMantia AS (2001) Neural development, cell–cell signaling, and the “two-hit” hypothesis of schizophrenia. Schizophr Bull 27:457–476

    CAS  PubMed  Google Scholar 

  65. Arnold SE (1999) Neurodevelopmental abnormalities in schizophrenia: insights from neuropathology. Dev Psychopathol 11:439–456

    CAS  PubMed  Google Scholar 

  66. Impagnatiello F, Guidotti AR, Pesold C et al (1998) A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci USA 95:15718–15723

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Guidotti A, Pesold C, Costa E (2000) New neurochemical markers for psychosis: a working hypothesis of their operation. Neurochem Res 25:1207–1218

    CAS  PubMed  Google Scholar 

  68. Van Broeckhoven C, Verheyen G (1999) Report of the chromosome 18 workshop. Am J Med Genet 88:263–270

    PubMed  Google Scholar 

  69. Potash JB, DePaulo JR Jr (2000) Searching high and low: a review of the genetics of bipolar disorder. Bipolar Disord 2:8–26

    CAS  PubMed  Google Scholar 

  70. Lewis CM, Levinson DF, Wise LH et al (2003) Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: schizophrenia. Am J Hum Genet 73:34–48

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Segurado R, Detera-Wadleigh SD, Levinson DF et al (2003) Genome scan meta-analysis of schizophrenia and bipolar disorder, part III: bipolar disorder. Am J Hum Genet 73:49–62

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Pickard BS, Malloy MP, Clark L et al (2005) Candidate psychiatric illness genes identified in patients with pericentric inversions of chromosome 18. Psychiatr Genet 15:37–44

    PubMed  Google Scholar 

  73. Cross-Disorder Group of the Psychiatric Genomics Consortium, Lee SH, Ripke S et al (2013) Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet 45:984–994

    CAS  PubMed  Google Scholar 

  74. Breschel TS, McInnis MG, Margolis RL et al (1997) A novel, heritable, expanding CTG repeat in an intron of the SEF2-1 gene on chromosome 18q21.1. Hum Mol Genet 6:1855–1863

    CAS  PubMed  Google Scholar 

  75. Del-Favero J, Gestel SV, Børglum AD et al (2002) European combined analysis of the CTG18.1 and the ERDA1 CAG/CTG repeats in bipolar disorder. Eur J Hum Genet 10:276–280

    CAS  PubMed  Google Scholar 

  76. Stefansson H, Ophoff RA, Steinberg S et al (2009) Common variants conferring risk of schizophrenia. Nature 460:744–747

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Steinberg S, de Jong S, Irish Schizophrenia Genomics Consortium et al (2011) Common variants at VRK2 and TCF4 conferring risk of schizophrenia. Hum Mol Genet 20:4076–4081

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Li T, Li Z, Chen P et al (2010) Common variants in major histocompatibility complex region and TCF4 gene are significantly associated with schizophrenia in Han Chinese. Biol Psychiatry 68:671–673

    CAS  PubMed  Google Scholar 

  79. Irish Schizophrenia Genomics Consortium and the Wellcome Trust Case Control Consortium 2 (2012) Genome-wide association study implicates HLA-C*01:02 as a risk factor at the major histocompatibility complex locus in schizophrenia. Biol Psychiatry 72:620–628

    PubMed Central  Google Scholar 

  80. Aberg KA, Liu Y, Bukszár J et al (2013) A comprehensive family-based replication study of schizophrenia genes. JAMA Psychiatry 70:1–9

    Google Scholar 

  81. McClellan J, King M-C (2010) Genomic analysis of mental illness: a changing landscape. JAMA 303:2523–2524

    CAS  PubMed  Google Scholar 

  82. Papiol S, Malzahn D, Kästner A et al (2011) Dissociation of accumulated genetic risk and disease severity in patients with schizophrenia. Transl Psychiatry 1:e45

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Wirgenes KV, Sønderby IE, Haukvik UK et al (2012) TCF4 sequence variants and mRNA levels are associated with neurodevelopmental characteristics in psychotic disorders. Transl Psychiatry 2:e112

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Lennertz L, Quednow BB, Benninghoff J et al (2011) Impact of TCF4 on the genetics of schizophrenia. Eur Arch Psychiatry Clin Neurosci 261(Suppl 2):S161–S165

    PubMed  Google Scholar 

  85. Bleuler E (1911) Dementia praecox oder die Gruppe der Schizophrenien. In: Aschaffenburg G (ed) Handbuch der Psychiatrie, Spezieller Teil, 4. Abteilung, 1. Hälfte. Deutike, Leipzig

  86. Kraepelin E (1909) Psychiatrie. Ein Lehrbuch für Studierende und Ärzte

  87. Carlsson A (1995) Neurocircuitries and neurotransmitter interactions in schizophrenia. Int Clin Psychopharmacol 10(Suppl 3):21–28

    PubMed  Google Scholar 

  88. Braff D, Stone C, Callaway E et al (1978) Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 15:339–343

    CAS  PubMed  Google Scholar 

  89. Braff DL, Grillon C, Geyer MA (1992) Gating and habituation of the startle reflex in schizophrenic patients. Arch Gen Psychiatry 49:206–215

    CAS  PubMed  Google Scholar 

  90. Nuechterlein KH, Dawson ME (1984) Information processing and attentional functioning in the developmental course of schizophrenic disorders. Schizophr Bull 10:160–203

    CAS  PubMed  Google Scholar 

  91. Nuechterlein KH, Dawson ME, Green MF (1994) Information-processing abnormalities as neuropsychological vulnerability indicators for schizophrenia. Acta Psychiatr Scand Suppl 384:71–79

    CAS  PubMed  Google Scholar 

  92. Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160:636–645

    PubMed  Google Scholar 

  93. Braff DL, Light GA (2004) Preattentional and attentional cognitive deficits as targets for treating schizophrenia. Psychopharmacology 174:75–85

    CAS  PubMed  Google Scholar 

  94. Braff DL, Light GA, Swerdlow NR (2007) Prepulse inhibition and P50 suppression are both deficient but not correlated in schizophrenia patients. Biol Psychiatry 61:1204–1207

    CAS  PubMed  Google Scholar 

  95. Cadenhead KS, Carasso BS, Swerdlow NR et al (1999) Prepulse inhibition and habituation of the startle response are stable neurobiological measures in a normal male population. Biol Psychiatry 45:360–364

    CAS  PubMed  Google Scholar 

  96. Cadenhead KS, Light GA, Geyer MA, Braff DL (2000) Sensory gating deficits assessed by the P50 event-related potential in subjects with schizotypal personality disorder. Am J Psychiatry 157:55–59

    CAS  PubMed  Google Scholar 

  97. Cadenhead KS, Light GA, Shafer KM, Braff DL (2005) P50 suppression in individuals at risk for schizophrenia: the convergence of clinical, familial, and vulnerability marker risk assessment. Biol Psychiatry 57:1504–1509

    PubMed  Google Scholar 

  98. Clementz BA, Geyer MA, Braff DL (1997) P50 suppression among schizophrenia and normal comparison subjects: a methodological analysis. Biol Psychiatry 41:1035–1044

    CAS  PubMed  Google Scholar 

  99. Clementz BA, Geyer MA, Braff DL (1998) Poor P50 suppression among schizophrenia patients and their first-degree biological relatives. Am J Psychiatry 155:1691–1694

    CAS  PubMed  Google Scholar 

  100. Patterson JV, Hetrick WP, Boutros NN et al (2008) P50 sensory gating ratios in schizophrenics and controls: a review and data analysis. Psychiatry Res 158:226–247

    PubMed  Google Scholar 

  101. Anokhin AP, Golosheykin S, Heath AC (2007) Genetic and environmental influences on emotion-modulated startle reflex: a twin study. Psychophysiology 44:106–112

    PubMed  Google Scholar 

  102. Anokhin AP, Heath AC, Myers E et al (2003) Genetic influences on prepulse inhibition of startle reflex in humans. Neurosci Lett 353:45–48

    CAS  PubMed  Google Scholar 

  103. Anokhin AP, Vedeniapin AB, Heath AC et al (2007) Genetic and environmental influences on sensory gating of mid-latency auditory evoked responses: a twin study. Schizophr Res 89:312–319

    PubMed  Google Scholar 

  104. Brockhaus-Dumke A, Schultze-Lutter F, Mueller R et al (2008) Sensory gating in schizophrenia: P50 and N100 gating in antipsychotic-free subjects at risk, first-episode, and chronic patients. Biol Psychiatry 64:376–384

    PubMed  Google Scholar 

  105. Greenwood TA, Braff DL, Light GA et al (2007) Initial heritability analyses of endophenotypic measures for schizophrenia: the consortium on the genetics of schizophrenia. Arch Gen Psychiatry 64:1242–1250

    PubMed  Google Scholar 

  106. Greenwood TA, Lazzeroni LC, Murray SS et al (2011) Analysis of 94 candidate genes and 12 endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia. Am J Psychiatry 168:930–946

    PubMed Central  PubMed  Google Scholar 

  107. Quednow BB, Frommann I, Berning J et al (2008) Impaired sensorimotor gating of the acoustic startle response in the prodrome of schizophrenia. Biol Psychiatry 64:766–773

    PubMed  Google Scholar 

  108. Csomor PA, Stadler RR, Feldon J et al (2008) Haloperidol differentially modulates prepulse inhibition and p50 suppression in healthy humans stratified for low and high gating levels. Neuropsychopharmacology 33:497–512

    CAS  PubMed  Google Scholar 

  109. Oranje B, Geyer MA, Bocker KBE et al (2006) Prepulse inhibition and P50 suppression: commonalities and dissociations. Psychiatry Res 143:147–158

    PubMed  Google Scholar 

  110. Schwarzkopf SB, Lamberti JS, Smith DA (1993) Concurrent assessment of acoustic startle and auditory P50 evoked potential measures of sensory inhibition. Biol Psychiatry 33:815–828

    CAS  PubMed  Google Scholar 

  111. Allen AJ, Griss ME, Folley BS et al (2009) Endophenotypes in schizophrenia: a selective review. Schizophr Res 109:24–37

    PubMed Central  PubMed  Google Scholar 

  112. Brzózka MM, Radyushkin K, Wichert SP et al (2010) Cognitive and sensorimotor gating impairments in transgenic mice overexpressing the schizophrenia susceptibility gene Tcf4 in the brain. Biol Psychiatry 68:33–40

    PubMed  Google Scholar 

  113. Quednow BB, Ettinger U, Mössner R et al (2011) The schizophrenia risk allele C of the TCF4 rs9960767 polymorphism disrupts sensorimotor gating in schizophrenia spectrum and healthy volunteers. J Neurosci 31:6684–6691

    CAS  PubMed  Google Scholar 

  114. Quednow BB, Brinkmeyer J, Mobascher A et al (2012) Schizophrenia risk polymorphisms in the TCF4 gene interact with smoking in the modulation of auditory sensory gating. Proc Natl Acad Sci USA 109:6271–6276

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Dalack GW, Healy DJ, Meador-Woodruff JH (1998) Nicotine dependence in schizophrenia: clinical phenomena and laboratory findings. Am J Psychiatry 155:1490–1501

    CAS  PubMed  Google Scholar 

  116. Kumari V, Postma P (2005) Nicotine use in schizophrenia: the self medication hypotheses. Neurosci Biobehav Rev 29:1021–1034

    CAS  PubMed  Google Scholar 

  117. Korzyukov O, Pflieger ME, Wagner M et al (2007) Generators of the intracranial P50 response in auditory sensory gating. Neuroimage 35:814–826

    PubMed Central  PubMed  Google Scholar 

  118. Bak N, Glenthoj BY, Rostrup E et al (2011) Source localization of sensory gating: a combined EEG and fMRI study in healthy volunteers. Neuroimage 54:2711–2718

    PubMed  Google Scholar 

  119. Brzózka MM, Rossner MJ (2013) Deficits in trace fear memory in a mouse model of the schizophrenia risk gene TCF4. Behav Brain Res 237:348–356

    PubMed  Google Scholar 

  120. Rössler W, Hengartner MP, Angst J, Ajdacic-Gross V (2012) Linking substance use with symptoms of subclinical psychosis in a community cohort over 30 years. Addiction 107:1174–1184

    PubMed  Google Scholar 

  121. Weiser M, Reichenberg A, Grotto I et al (2004) Higher rates of cigarette smoking in male adolescents before the onset of schizophrenia: a historical-prospective cohort study. Am J Psychiatry 161:1219–1223

    PubMed  Google Scholar 

  122. Gur RE, Calkins ME, Gur RC et al (2007) The consortium on the genetics of schizophrenia: neurocognitive endophenotypes. Schizophr Bull 33:49–68

    PubMed Central  PubMed  Google Scholar 

  123. Heinrichs RW, Zakzanis KK (1998) Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology 12:426–445

    CAS  PubMed  Google Scholar 

  124. Cannon TD, Huttunen MO, Lonnqvist J et al (2000) The inheritance of neuropsychological dysfunction in twins discordant for schizophrenia. Am J Hum Genet 67:369–382

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Van Erp TGM, Therman S, Pirkola T et al (2008) Verbal recall and recognition in twins discordant for schizophrenia. Psychiatry Res 159:271–280

    PubMed Central  PubMed  Google Scholar 

  126. Faraone SV, Seidman LJ, Kremen WS et al (2000) Neuropsychologic functioning among the nonpsychotic relatives of schizophrenic patients: the effect of genetic loading. Biol Psychiatry 48:120–126

    CAS  PubMed  Google Scholar 

  127. Lennertz L, Rujescu D, Wagner M et al (2011) Novel schizophrenia risk gene TCF4 influences verbal learning and memory functioning in schizophrenia patients. Neuropsychobiology 63:131–136

    PubMed  Google Scholar 

  128. Zhu X, Gu H, Liu Z et al (2013) Associations between TCF4 gene polymorphism and cognitive functions in schizophrenia patients and healthy controls. Neuropsychopharmacology 38:683–689

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Albanna A, Choudhry Z, Harvey P-O et al (2013) TCF4 gene polymorphism and cognitive performance in patients with first episode psychosis. Schizophr Res. doi:10.1016/j.schres.2013.10.038

    PubMed  Google Scholar 

  130. Kochunov P, Charlesworth J, Winkler A et al (2013) Transcriptomics of cortical gray matter thickness decline during normal aging. Neuroimage 82:273–283

    CAS  PubMed  Google Scholar 

  131. Kim S, Cho H, Lee D, Webster MJ (2012) Association between SNPs and gene expression in multiple regions of the human brain. Transl Psychiatry 2:e113

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Forrest M, Chapman RM, Doyle AM et al (2012) Functional analysis of TCF4 missense mutations that cause Pitt-Hopkins syndrome. Hum Mutat 33:1676–1686

    CAS  PubMed  Google Scholar 

  133. De Pontual L, Mathieu Y, Golzio C et al (2009) Mutational, functional, and expression studies of the TCF4 gene in Pitt-Hopkins syndrome. Hum Mutat 30:669–676

    PubMed  Google Scholar 

  134. Sweatt JD (2013) Pitt-Hopkins Syndrome: intellectual disability due to loss of TCF4-regulated gene transcription. Exp Mol Med 45:e21

    PubMed Central  PubMed  Google Scholar 

  135. Zweier C, Peippo MM, Hoyer J et al (2007) Haploinsufficiency of TCF4 causes syndromal mental retardation with intermittent hyperventilation (Pitt-Hopkins syndrome). Am J Hum Genet 80:994–1001

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Takano K, Lyons M, Moyes C et al (2010) Two percent of patients suspected of having Angelman syndrome have TCF4 mutations. Clin Genet 78:282–288

    CAS  PubMed  Google Scholar 

  137. Van Balkom IDC, Vuijk PJ, Franssens M et al (2012) Development, cognition, and behaviour in Pitt-Hopkins syndrome. Dev Med Child Neurol 54:925–931

    PubMed  Google Scholar 

  138. Talkowski ME, Rosenfeld JA, Blumenthal I et al (2012) Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell 149:525–537

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Giurgea I, Missirian C, Cacciagli P et al (2008) TCF4 deletions in Pitt-Hopkins Syndrome. Hum Mutat 29:E242–E251

    PubMed  Google Scholar 

  140. Marangi G, Ricciardi S, Orteschi D et al (2012) Proposal of a clinical score for the molecular test for Pitt-Hopkins syndrome. Am J Med Genet A 158A:1604–1611

    PubMed  Google Scholar 

  141. Lehalle D, Williams C, Siu VM, Clayton-Smith J (2011) Fetal pads as a clue to the diagnosis of Pitt-Hopkins syndrome. Am J Med Genet A 155A:1685–1689

    PubMed  Google Scholar 

  142. Losonczy MF, Song IS, Mohs RC et al (1986) Correlates of lateral ventricular size in chronic schizophrenia, I: behavioral and treatment response measures. Am J Psychiatry 143:976–981

    CAS  PubMed  Google Scholar 

  143. Peippo MM, Simola KOJ, Valanne LK et al (2006) Pitt-Hopkins syndrome in two patients and further definition of the phenotype. Clin Dysmorphol 15:47–54

    PubMed  Google Scholar 

  144. Neuman T, Keen A, Knapik E et al (1993) ME1 and GE1: basic helix-loop-helix transcription factors expressed at high levels in the developing nervous system and in morphogenetically active regions. Eur J Neurosci 5:311–318

    CAS  PubMed  Google Scholar 

  145. Uittenbogaard M, Chiaramello A (2000) Differential expression patterns of the basic helix-loop-helix transcription factors during aging of the murine brain. Neurosci Lett 280:95–98

    CAS  PubMed  Google Scholar 

  146. Ravanpay AC, Olson JM (2008) E protein dosage influences brain development more than family member identity. J Neurosci Res 86:1472–1481

    CAS  PubMed  Google Scholar 

  147. Ishibashi M, Moriyoshi K, Sasai Y et al (1994) Persistent expression of helix-loop-helix factor HES-1 prevents mammalian neural differentiation in the central nervous system. EMBO J 13:1799–1805

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Nakamura Y, Sakakibara S, Miyata T et al (2000) The bHLH gene hes1 as a repressor of the neuronal commitment of CNS stem cells. J Neurosci 20:283–293

    CAS  PubMed  Google Scholar 

  149. Ross SE, Greenberg ME, Stiles CD (2003) Basic helix-loop-helix factors in cortical development. Neuron 39:13–25

    CAS  PubMed  Google Scholar 

  150. Brockschmidt A, Filippi A, Charbel Issa P et al (2011) Neurologic and ocular phenotype in Pitt-Hopkins syndrome and a zebrafish model. Hum Genet 130:645–655

    PubMed  Google Scholar 

  151. Flora A, Garcia JJ, Thaller C, Zoghbi HY (2007) The E-protein Tcf4 interacts with Math1 to regulate differentiation of a specific subset of neuronal progenitors. Proc Natl Acad Sci USA 104:15382–15387

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Zhuang Y, Cheng P, Weintraub H (1996) B-lymphocyte development is regulated by the combined dosage of three basic helix-loop-helix genes, E2A, E2-2, and HEB. Mol Cell Biol 16:2898–2905

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Bergqvist I, Eriksson M, Saarikettu J et al (2000) The basic helix-loop-helix transcription factor E2-2 is involved in T lymphocyte development. Eur J Immunol 30:2857–2863

    CAS  PubMed  Google Scholar 

  154. Guella I, Sequeira A, Rollins B et al (2013) Analysis of miR-137 expression and rs1625579 in dorsolateral prefrontal cortex. J Psychiatr Res 47(9):1215–1221

    PubMed  Google Scholar 

  155. Brennand KJ, Simone A, Jou J et al (2011) Modelling schizophrenia using human induced pluripotent stem cells. Nature 473:221–225

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Quintana J, Wong T, Ortiz-Portillo E et al (2004) Anterior cingulate dysfunction during choice anticipation in schizophrenia. Psychiatry Res 132:117–130

    PubMed  Google Scholar 

  157. Sigurdsson T, Stark KL, Karayiorgou M et al (2010) Impaired hippocampal-prefrontal synchrony in a genetic mouse model of schizophrenia. Nature 464:763–767

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Meyer-Lindenberg AS, Olsen RK, Kohn PD et al (2005) Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Arch Gen Psychiatry 62:379–386

    PubMed  Google Scholar 

  159. Wolf RC, Vasic N, Sambataro F et al (2009) Temporally anticorrelated brain networks during working memory performance reveal aberrant prefrontal and hippocampal connectivity in patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 33:1464–1473

    PubMed  Google Scholar 

  160. Braff DL (2011) Gating in schizophrenia: from genes to cognition (to real world function?). Biol Psychiatry 69:395–396

    PubMed  Google Scholar 

  161. Braff DL, Geyer MA (1990) Sensorimotor gating and schizophrenia. Human and animal model studies. Arch Gen Psychiatry 47:181–188

    CAS  PubMed  Google Scholar 

  162. Quednow BB, Kühn K-U, Beckmann K et al (2006) Attenuation of the prepulse inhibition of the acoustic startle response within and between sessions. Biol Psychol 71:256–263

    PubMed  Google Scholar 

  163. Guillemot F (2007) Spatial and temporal specification of neural fates by transcription factor codes. Development 134:3771–3780

    CAS  PubMed  Google Scholar 

  164. Lin C-H, Hansen S, Wang Z et al (2005) The dosage of the neuroD2 transcription factor regulates amygdala development and emotional learning. Proc Natl Acad Sci USA 102:14877–14882

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Corneliussen B, Holm M, Waltersson Y et al (1994) Calcium/calmodulin inhibition of basic-helix-loop-helix transcription factor domains. Nature 368:760–764

    CAS  PubMed  Google Scholar 

  166. Hauser J, Sveshnikova N, Wallenius A et al (2008) B-cell receptor activation inhibits AID expression through calmodulin inhibition of E-proteins. Proc Natl Acad Sci USA 105:1267–1272

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Hauser J, Saarikettu J, Grundström T (2008) Calcium regulation of myogenesis by differential calmodulin inhibition of basic helix-loop-helix transcription factors. Mol Biol Cell 19:2509–2519

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Onions J, Hermann S, Grundström T (1997) Basic helix-loop-helix protein sequences determining differential inhibition by calmodulin and S-100 proteins. J Biol Chem 272:23930–23937

    CAS  PubMed  Google Scholar 

  169. Saarikettu J, Sveshnikova N, Grundström T (2004) Calcium/calmodulin inhibition of transcriptional activity of E-proteins by prevention of their binding to DNA. J Biol Chem 279:41004–41011

    CAS  PubMed  Google Scholar 

  170. Bading H (2013) Nuclear calcium signalling in the regulation of brain function. Nat Rev Neurosci 14:593–608

    CAS  PubMed  Google Scholar 

  171. Greer PL, Greenberg ME (2008) From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function. Neuron 59:846–860

    CAS  PubMed  Google Scholar 

  172. Cross-Disorder Group of the Psychiatric Genomics Consortium, Smoller JW, Craddock N et al (2013) Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381:1371–1379

    CAS  Google Scholar 

  173. Ferreira MAR, O’Donovan MC, Meng YA et al (2008) Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 40:1056–1058

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Psychiatric GWAS Consortium Bipolar Disorder Working Group (2011) Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet 43:977–983

    Google Scholar 

  175. Green EK, Grozeva D, Jones I et al (2010) The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Mol Psychiatry 15:1016–1022

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Thimm M, Kircher T, Kellermann T et al (2011) Effects of a CACNA1C genotype on attention networks in healthy individuals. Psychol Med 41:1551–1561

    CAS  PubMed  Google Scholar 

  177. Erk S, Meyer-Lindenberg A, Schnell K et al (2010) Brain function in carriers of a genome-wide supported bipolar disorder variant. Arch Gen Psychiatry 67:803–811

    PubMed  Google Scholar 

  178. Gomez-Ospina N, Tsuruta F, Barreto-Chang O et al (2006) The C terminus of the L-type voltage-gated calcium channel CaV1.2 encodes a transcription factor. Cell 127:591–606

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Aizawa H, Hu S-C, Bobb K et al (2004) Dendrite development regulated by CREST, a calcium-regulated transcriptional activator. Science 303:197–202

    CAS  PubMed  Google Scholar 

  180. Gaudillière B, Konishi Y, de la Iglesia N et al (2004) A CaMKII-NeuroD signaling pathway specifies dendritic morphogenesis. Neuron 41:229–241

    PubMed  Google Scholar 

  181. Ince-Dunn G, Hall BJ, Hu S-C et al (2006) Regulation of thalamocortical patterning and synaptic maturation by NeuroD2. Neuron 49:683–695

    CAS  PubMed  Google Scholar 

  182. Wilke SA, Hall BJ, Antonios JK et al (2012) NeuroD2 regulates the development of hippocampal mossy fiber synapses. Neural Dev 7:9

    CAS  PubMed Central  PubMed  Google Scholar 

  183. Wright C, Turner JA, Calhoun VD, Perrone-Bizzozero N (2013) Potential impact of miR-137 and its targets in schizophrenia. Front Genet 4:58

    PubMed Central  PubMed  Google Scholar 

  184. Smrt RD, Szulwach KE, Pfeiffer RL et al (2010) MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells 28:1060–1070

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Szulwach KE, Li X, Smrt RD et al (2010) Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J Cell Biol 189:127–141

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Berrettini W, Yuan X, Tozzi F et al (2008) Alpha-5/alpha-3 nicotinic receptor subunit alleles increase risk for heavy smoking. Mol Psychiatry 13:368–373

    CAS  PubMed Central  PubMed  Google Scholar 

  187. Bierut LJ, Stitzel JA, Wang JC et al (2008) Variants in nicotinic receptors and risk for nicotine dependence. Am J Psychiatry 165:1163–1171

    PubMed Central  PubMed  Google Scholar 

  188. Caporaso N, Gu F, Chatterjee N et al (2009) Genome-wide and candidate gene association study of cigarette smoking behaviors. PLoS ONE 4:e4653

    PubMed Central  PubMed  Google Scholar 

  189. Liu JZ, Tozzi F, Waterworth DM et al (2010) Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat Genet 42:436–440

    CAS  PubMed Central  PubMed  Google Scholar 

  190. Saccone NL, Saccone SF, Hinrichs AL et al (2009) Multiple distinct risk loci for nicotine dependence identified by dense coverage of the complete family of nicotinic receptor subunit (CHRN) genes. Am J Med Genet B 150B:453–466

    CAS  Google Scholar 

  191. Petrovsky N, Ettinger U, Kessler H et al (2013) The effect of nicotine on sensorimotor gating is modulated by a CHRNA3 polymorphism. Psychopharmacology (Berl) 229(1):31–40

    CAS  Google Scholar 

  192. Winterer G, Mittelstrass K, Giegling I et al (2010) Risk gene variants for nicotine dependence in the CHRNA5-CHRNA3-CHRNB4 cluster are associated with cognitive performance. Am J Med Genet B 153B:1448–1458

    Google Scholar 

  193. Ohlrogge M, Doucet JR, Ryugo DK (2001) Projections of the pontine nuclei to the cochlear nucleus in rats. J Comp Neurol 436:290–303

    CAS  PubMed  Google Scholar 

  194. Winer JA (2006) Decoding the auditory corticofugal systems. Hear Res 212:1–8

    PubMed  Google Scholar 

  195. Woolf NJ, Butcher LL (1989) Cholinergic systems in the rat brain: IV. Descending projections of the pontomesencephalic tegmentum. Brain Res Bull 23:519–540

    CAS  PubMed  Google Scholar 

  196. Erwin RJ, Buchwald JS (1987) Midlatency auditory evoked responses in the human and the cat model. Electroencephalogr Clin Neurophysiol Suppl 40:461–467

    CAS  PubMed  Google Scholar 

  197. Fendt M, Li L, Yeomans JS (2001) Brain stem circuits mediating prepulse inhibition of the startle reflex. Psychopharmacology 156:216–224

    CAS  PubMed  Google Scholar 

  198. Harrison JB, Woolf NJ, Buchwald JS (1990) Cholinergic neurons of the feline pontomesencephalon. I. Essential role in “Wave A” generation. Brain Res 520:43–54

    CAS  PubMed  Google Scholar 

  199. Reese NB, Garcia-Rill E, Skinner RD (1995) Auditory input to the pedunculopontine nucleus: I. Evoked potentials. Brain Res Bull 37:257–264

    CAS  PubMed  Google Scholar 

  200. Morley BJ (2005) Nicotinic cholinergic intercellular communication: implications for the developing auditory system. Hear Res 206:74–88

    CAS  PubMed  Google Scholar 

  201. Alkondon M, Pereira EF, Almeida LE et al (2000) Nicotine at concentrations found in cigarette smokers activates and desensitizes nicotinic acetylcholine receptors in CA1 interneurons of rat hippocampus. Neuropharmacology 39:2726–2739

    CAS  PubMed  Google Scholar 

  202. Picciotto MR, Caldarone BJ, Brunzell DH et al (2001) Neuronal nicotinic acetylcholine receptor subunit knockout mice: physiological and behavioral phenotypes and possible clinical implications. Pharmacol Ther 92:89–108

    CAS  PubMed  Google Scholar 

  203. Besson M, Granon S, Mameli-Engvall M et al (2007) Long-term effects of chronic nicotine exposure on brain nicotinic receptors. Proc Natl Acad Sci USA 104:8155–8160

    CAS  PubMed Central  PubMed  Google Scholar 

  204. Breese CR, Lee MJ, Adams CE et al (2000) Abnormal regulation of high affinity nicotinic receptors in subjects with schizophrenia. Neuropsychopharmacology 23:351–364

    CAS  PubMed  Google Scholar 

  205. Freedman R, Olincy A, Ross RG et al (2003) The genetics of sensory gating deficits in schizophrenia. Curr Psychiatry Rep 5:155–161

    PubMed  Google Scholar 

  206. Satta R, Maloku E, Zhubi A et al (2008) Nicotine decreases DNA methyltransferase 1 expression and glutamic acid decarboxylase 67 promoter methylation in GABAergic interneurons. Proc Natl Acad Sci USA 105:16356–16361

    CAS  PubMed Central  PubMed  Google Scholar 

  207. Philibert RA, Beach SRH, Gunter TD et al (2010) The effect of smoking on MAOA promoter methylation in DNA prepared from lymphoblasts and whole blood. Am J Med Genet B 153B:619–628

    CAS  Google Scholar 

  208. Whalen S, Héron D, Gaillon T et al (2012) Novel comprehensive diagnostic strategy in Pitt-Hopkins syndrome: clinical score and further delineation of the TCF4 mutational spectrum. Hum Mutat 33:64–72

    Google Scholar 

Download references

Acknowledgments

Boris B. Quednow was supported by the Swiss National Science Foundation (Grants No. PP00P1_123516 and PP00P1-146326). Magdalena M. Brzózka and Moritz J. Rossner were supported by grants of the Deutsche Forschungsgemeinschaft (CMPB and KFO 241: RO 4076/1-1). The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Boris B. Quednow or Moritz J. Rossner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quednow, B.B., Brzózka, M.M. & Rossner, M.J. Transcription factor 4 (TCF4) and schizophrenia: integrating the animal and the human perspective. Cell. Mol. Life Sci. 71, 2815–2835 (2014). https://doi.org/10.1007/s00018-013-1553-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1553-4

Keywords

Navigation