Skip to main content

Advertisement

Log in

The Role of Extracellular Signal-Regulated Kinases (ERK) in the Regulation of mGlu5 Receptors in Neurons

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The metabotropic glutamate (mGlu) receptor 5 is a G protein-coupled receptor and is densely expressed in the mammalian brain. Like other glutamate receptors, mGlu5 receptors are tightly regulated by posttranslational modifications such as phosphorylation, although underlying mechanisms are incompletely investigated. In this study, we investigated the role of a prime kinase, extracellular signal-regulated kinase 1 (ERK1), in the phosphorylation and regulation of mGlu5 receptors in vitro and in striatal neurons. We found that recombinant ERK1 proteins directly bound to the C-terminal tail (CT) of mGlu5 receptors in vitro. Endogenous ERK1 also interacted with mGlu5 receptor proteins in adult rat striatal neurons in vivo. The kinase showed the ability to phosphorylate mGlu5 receptors. A serine residue in the distal region of mGlu5 CT was found to be a primary phosphorylation site sensitive to ERK1. In functional studies, we found that pharmacological inhibition of ERK with an inhibitor U0126 reduced the efficacy of mGlu5 receptors in stimulating production of cytoplasmic inositol-1,4,5-triphosphate, a major downstream conventional signaling event, in striatal neurons under normal conditions. These results identify mGlu5 as a new biochemical substrate of ERK1. The kinase can interact with and phosphorylate an intracellular domain of mGlu5 receptors in striatal neurons and thereby control its signaling efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams JP, Anderson AE, Varga AW, Dineley KT, Cook RG, Pfaffinger PJ, Sweatt JD (2000) The A-type potassium channel Kv4.2 is a substrate for the mitogen-activated protein kinase ERK. J Neurochem 75:2277–2287

    Article  CAS  Google Scholar 

  • Cansev M, Orhan F, Yaylagul EO, Isik E, Turkyilmaz M, Aydin S, Gumus A, Sevinc C, Coskun N, Ulus IH, Wurtman RJ (2015) Evidence for the existence of pyrimidinergic transmission in rat brain. Neuropharmacology 91:77–86

    Article  CAS  Google Scholar 

  • Cruzalegui FH, Cano E, Treisman R (1999) ERK activation induces phosphorylation of Elk-1 at multiple S/T-P motifs to high stoichiometry. Oncogene 18:7948–7957

    Article  CAS  Google Scholar 

  • Debata PR, Ranasinghe B, Berliner A, Curcio GM, Tantry SJ, Ponimaskin E, Banerjee P (2010) Erk1/2-dependent phosphorylation of PKCalpha at threonine 638 in hippocampal 5-HT(1A) receptor-mediated signaling. Biochem Biophys Res Commun 397:401–406

    Article  CAS  Google Scholar 

  • Dhami GK, Ferguson SS (2006) Regulation of metabotropic glutamate receptor signaling, desensitization and endocytosis. Pharmacol Ther 111:260–271

    Article  CAS  Google Scholar 

  • Edbauer D, Cheng D, Batterton MN, Wang CF, Duong DM, Yaffe MB, Peng J, Shang M (2009) Identification and characterization of neuronal mitogen-activated protein kinase substrates using a specific phosphomotif antibody. Mol Cell Proteomics 8:681–695

    Article  CAS  Google Scholar 

  • Enz R (2012) Metabotropic glutamate receptors and interacting proteins: evolving drug targets. Curr Drug Targets 13:145–156

    Article  CAS  Google Scholar 

  • Fagni L (2012) Diversity of metabotropic glutamate receptor-interacting proteins and pathophysiological functions. Adv Exp Med Biol 970:63–79

    Article  CAS  Google Scholar 

  • Gereau R, Heinemann S (1998) Role of protein kinase C phosphorylation in rapid desensitization of metabotropic glutamate receptor 5. Neuron 20:143–151

    Article  CAS  Google Scholar 

  • Gille H, Kortenjann M, Thomae O, Moomaw C, Slaughter C, Cobb MH, Shaw PE (1995) ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J 14:951–962

    Article  CAS  Google Scholar 

  • Guo ML, Xue B, Jin DZ, Mao LM, Wang JQ (2012) Interactions and phosphorylation of postsynaptic density 93 (PSD-93) by extracellular signal-regulated kinase (ERK). Brain Res 1460:18–25

    Article  Google Scholar 

  • Hu JH, Park JM, Park S, Xiao B, Dehoff MH, Kim S, Hayashi T, Schwarz MK, Huganir RL, Seeburg PH, Linden DJ, Worley PF (2010) Homeostatic scaling requires group I mGluR activation mediated by Homer1a. Neuron 68:1128–1142

    Article  CAS  Google Scholar 

  • Hu JH, Yang L, Kammermeier PJ, Moore CG, Brakeman PR, Tu J, Yu S, Petralia RS, Li Z, Zhang PW, Park JM, Dong X, Xiao B, Worley PF (2012) Preso1 dynamically regulates group I metabotropic glutamate receptors. Nat Neurosci 15:836–844

    Article  CAS  Google Scholar 

  • Jin DZ, Guo ML, Xue B, Mao LM, Wang JQ (2013a) Differential regulation of CaMKIIα with mGluR5 and NMDA receptors by Ca2+ in neurons. J Neurochem 127:620–631

    Article  CAS  Google Scholar 

  • Jin DZ, Guo ML, Xue B, Fibuch EE, Choe ES, Mao LM, Wang JQ (2013b) Phosphorylation and feedback regulation of metabotropic glutamate receptor 1 by calcium/calmodulin-dependent protein kinase II. J Neurosci 33:3402–3412

    Article  CAS  Google Scholar 

  • Jovanovic JN, Benfenati F, Siow YL, Sihra TS, Sanghera JS, Pelech SL, Greengard P, Czernik AJ (1996) Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I-actin interactions. Proc Natl Acad Sci U S A 93:3679–3683

    Article  CAS  Google Scholar 

  • Kawabata S, Tsutsumi R, Kohara A, Yamaguchi T, Nakanishi S, Okada M (1996) Control of calcium oscillations by phosphorylation of metabotropic glutamate receptors. Nature 383:89–92

    Article  CAS  Google Scholar 

  • Kim CH, Braud S, Isaac JT, Roche KW (2005) Protein kinase C phosphorylation of the metabotropic glutamate receptor mGluR5 on serine 839 regulates Ca2+ oscillations. J Biol Chem 280:25409–25415

    Article  CAS  Google Scholar 

  • Kim CH, Lee J, Lee JY, Roche KW (2008) Metabotropic glutamate receptors: phosphorylation and receptor signaling. J Neurosci Res 86:1–10

    Article  CAS  Google Scholar 

  • Kosako H, Yamaguchi N, Aranami C, Ushiyama M, Kose S, Imamoto N, Taniguchi H, Nishida E, Hattori S (2009) Phosphoproteomics reveals new ERK MAP kinase targets and links ERK to nucleoporin-mediated nuclear transport. Nat Struct Mol Biol 16:1026–1035

    Article  CAS  Google Scholar 

  • Kuwajima M, Hall RA, Aiba A, Smith Y (2004) Subcellular and subsynaptic localization of group I metabotropic glutamate receptors in the monkey subthalamic nucleus. J Comp Neurol 474:589–602

    Article  CAS  Google Scholar 

  • Liu XY, Mao LM, Zhang GC, Papasian CJ, Fibuch EE, Lan HX, Zhou HF, Xu M, Wang JQ (2009) Activity-dependent modulation of limbic dopamine D3 receptors by CaMKII. Neuron 61:425–438

    Article  CAS  Google Scholar 

  • Lu W, Roche KW (2012) Posttranslational regulation of AMPA receptor trafficking and function. Curr Opin Neurobiol 22:470–479

    Article  CAS  Google Scholar 

  • Lujan R, Nusser Z, Roberts JD, Shigemoto R, Somogyi P (1996) Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur J Neurosci 8:1488–1500

    Article  CAS  Google Scholar 

  • Mao LM, Guo ML, Jin DZ, Fibuch EE, Choe ES, Wang JQ (2011) Posttranslational modification biology of glutamate receptors and drug addiction. Front Neuroanat 5:19

    Article  Google Scholar 

  • Mao LM, Liu XY, Zhang GC, Chu XP, Fibuch EE, Wang LS, Liu Z, Wang JQ (2008) Phosphorylation of group I metabotropic glutamate receptors (mGluR1/5) in vitro and in vivo. Neuropharmacology 55:403–408

    Article  CAS  Google Scholar 

  • Moutin E, Raynaud F, Roger J, Pellegrino E, Homburger V, Bertaso F, Ollendorff V, Bockaert J, Fagni L, Perroy J (2012) Dynamic remodeling of scaffold interactions in dendritic spines controls synaptic excitability. J Cell Biol 198:251–263

    Article  CAS  Google Scholar 

  • Nicoletti F, Bockaert J, Collingridge GL, Conn PJ, Ferraguti F, Schoepp DD, Wroblewski JT, Pin JP (2011) Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology 60:1017–1041

    Article  CAS  Google Scholar 

  • Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322

    Article  CAS  Google Scholar 

  • Orlando LR, Ayala R, Kett LR, Curley AA, Duffner J, Bragg DC, Tsai LH, Dunah AW, Young AB (2009) Phosphorylation of the homer-binding domain of group I metabotropic glutamate receptors by cyclin-dependent kinase 5. J Neurochem 110:557–569

    Article  CAS  Google Scholar 

  • Park JM, Hu JH, Milshteyn A, Zhang PW, Moore CG, Park S, Datko MC, Domingo RD, Reyes CM, Wang XJ, Etzkorn FA, Xiao B, Szumlinski KK, Kern D, Linden DJ, Worley PF (2013) A prolyl-isomerase mediates dopamine-dependent plasticity and cocaine motor sensitization. Cell 154:637–650

    Article  CAS  Google Scholar 

  • Sabio G, Reuver S, Feijoo C, Hasegawa M, Thomas GM, Centeno F, Kuhlendahl F, Leal-Ortiz S, Goedert M, Garner C, Cuenda A (2004) Stress- and mitogen-induced phosphorylation of the synapse-associated protein SAP90/PSD-95 by activation of SAPK3/p38gamma and ERK1/ERK2. Biochem J 380:19–30

    Article  CAS  Google Scholar 

  • Schrader LA, Bimbaum SG, Nadin BM, Ren Y, Bui D, Anderson AE, Sweatt JD (2006) ERK/MAPK regulates the Kv4.2 potassium channel by direct phosphorylation of the pore-forming subunit. Am J Physiol Cell Physiol 290:C852–C861

    Article  CAS  Google Scholar 

  • Shigemoto R, Nomura S, Ohishi H, Sugihara H, Nakanishi S, Mizuno N (1993) Immunohistochemical localization of a metabotropic glutamate receptor, mGluR5, in the rat brain. Neurosci Lett 163:53–57

    Article  CAS  Google Scholar 

  • Songyang Z, Lu KP, Kwon YT, Tsai LH, Filhol O, Cochet C, Brickey DA, Soderling TR, Bartleson C, Graves DJ, DeMaggio AJ, Hoekstra MF, Blenis J, Hunter T, Cantley LC (1996) A structure basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1. Mol Cell Biol 16:6486–6493

    Article  CAS  Google Scholar 

  • Sweatt JD (2004) Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 14:311–317

    Article  CAS  Google Scholar 

  • Tabatadze N, Huang G, May RM, Jain A, Woolley CS (2015) Sex differences in molecular signaling at inhibitory synapses in the hippocampus. J Neurosci 35:11252–11265

    Article  CAS  Google Scholar 

  • Tallaksen-Greene SJ, Kaatz KW, Romano C, Albin RL (1998) Localization of mGluR1a-like immunoreactivity and mGluR5alike immunoreactivity in identified population of striatal neurons. Brain Res 780:210–217

    Article  CAS  Google Scholar 

  • Testa CM, Standaert DG, Young AB, Penney JB Jr (1994) Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat. J Neurosci 14:3005–3018

    Article  CAS  Google Scholar 

  • Testa CM, Standaert DG, Landwehrmeyer GB, Penney JB Jr, Young AB (1995) Differential expression of mGluR5 metabotropic glutamate receptor mRNA by rat striatal neurons. J Comp Neurol 354:241–252

    Article  CAS  Google Scholar 

  • Thomas GM, Huganir RL (2004) MAPK cascade signaling and synaptic plasticity. Nat Rev Neurosci 5:173–183

    Article  CAS  Google Scholar 

  • Traynelis SF, Wollmuth LP, McBain CJ, Menniti ES, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496

    Article  CAS  Google Scholar 

  • Treisman R (1996) Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol 8:205–215

    Article  CAS  Google Scholar 

  • Tu JC, Xiao B, Yuan JP, Lanahan AA, Leoffert K, Li M, Linden DJ, Worley PF (1998) Homer binds a novel proline-rich motif and links group I metabotropic glutamate receptors with IP3 receptors. Neuron 21:717–726

    Article  CAS  Google Scholar 

  • Wang JQ, Fibuch EE, Mao LM (2007) Regulation of mitogen-activated protein kinases by glutamate receptors. J Neurochem 100:1–11

    Article  CAS  Google Scholar 

  • Yang JH, Mao LM, Choe ES, Wang JQ (2017) Synaptic ERK2 phosphorylates and regulates metabotropic glutamate receptor 1 in vitro and in neurons. Mol Neurobiol 54:7156–7170

    Article  CAS  Google Scholar 

  • Yang SH, Yates PR, Whitmarsh AJ, Davis RJ, Sharrocks D (1998) The Elk-1 ETS-domain transcription factor contains a mitogen-activated protein kinase targeting motif. Mol Cell Biol 18:710–720

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by NIH grants DA10355 (J.Q.W.) and MH61469 (J.Q.W.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dao-Zhong Jin or John Q. Wang.

Ethics declarations

All animal use procedures were in strict accordance with the NIH Guide for the Care and Use of Laboratory Animals and were approved by the Institutional Animal Care and Use Committee.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, DZ., Mao, LM. & Wang, J.Q. The Role of Extracellular Signal-Regulated Kinases (ERK) in the Regulation of mGlu5 Receptors in Neurons. J Mol Neurosci 66, 629–638 (2018). https://doi.org/10.1007/s12031-018-1193-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-018-1193-0

Keywords

Navigation