Skip to main content

Advertisement

Log in

Rapid Regulation of Glutamate Transport: Where Do We Go from Here?

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system (CNS). A family of five Na+-dependent transporters maintain low levels of extracellular glutamate and shape excitatory signaling. Shortly after the research group of the person being honored in this special issue (Dr. Baruch Kanner) cloned one of these transporters, his group and several others showed that their activity can be acutely (within minutes to hours) regulated. Since this time, several different signals and post-translational modifications have been implicated in the regulation of these transporters. In this review, we will provide a brief introduction to the distribution and function of this family of glutamate transporters. This will be followed by a discussion of the signals that rapidly control the activity and/or localization of these transporters, including protein kinase C, ubiquitination, glutamate transporter substrates, nitrosylation, and palmitoylation. We also include the results of our attempts to define the role of palmitoylation in the regulation of GLT-1 in crude synaptosomes. In some cases, the mechanisms have been fairly well-defined, but in others, the mechanisms are not understood. In several cases, contradictory phenomena have been observed by more than one group; we describe these studies with the goal of identifying the opportunities for advancing the field. Abnormal glutamatergic signaling has been implicated in a wide variety of psychiatric and neurologic disorders. Although recent studies have begun to link regulation of glutamate transporters to the pathogenesis of these disorders, it will be difficult to determine how regulation influences signaling or pathophysiology of glutamate without a better understanding of the mechanisms involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Raw data will be made available if requested.

Abbreviations

CNS:

Central nervous system

cAMP:

Cyclic adenosine monophosphate

dbcAMP:

Dibutyryl cyclic adenosine monophosphate

EAAC1:

Excitatory amino acid carrier 1

EAAT:

Excitatory amino acid transporter

GABA:

Gamma aminobutyric acid

GLUT-4:

Glucose transporter type 4

GLAST:

Glutamate aspartate transporter

GLT-1:

Glutamate transporter 1

iGluRs:

Ionotropic glutamate receptors

MDCK:

Madin-Darby Canine Kidney

mGluRs:

Metabotropic glutamate receptors

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MPP+ :

1-Methyl-4-phenylpyridinium

NHERF3:

Na+/H+-exchanger regulatory protein

PPARα:

Peroxisome proliferator-activated receptor-alpha

PDGF:

Platelet-derived growth factor

PDZ:

Post-synaptic density-95/Discs large/Zonula occludens

PKC:

Protein kinase C

WT:

Wild type

References

  1. Schousboe A (1981) Transport and metabolism of glutamate and GABA in neurons are glial cells. Int Rev Neurobiol 22:1–45

    Article  CAS  PubMed  Google Scholar 

  2. Fonnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42:1–11

    Article  CAS  PubMed  Google Scholar 

  3. McDonald JW, Johnston MV (1990) Physiological and pathophysiological roles of excitatory amino acids during central nervous system development. Brain Res Rev 15:41–70

    Article  PubMed  Google Scholar 

  4. Robinson MB, Coyle JT (1987) Glutamate and related acidic excitatory neurotransmitters: from basic science to clinical application. FASEB J 1:446–455

    Article  CAS  PubMed  Google Scholar 

  5. Meldrum BS (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130:1007S–1015S

    Article  CAS  PubMed  Google Scholar 

  6. McKenna MC (2013) Glutamate pays its own way in astrocytes. Front Endocrinol 4:191

    Article  Google Scholar 

  7. Schousboe A (2017) A Tribute to Mary C. McKenna: glutamate as energy substrate and neurotransmitter-functional interaction between neurons and astrocytes. Neurochem Res 42:4–9

    Article  CAS  PubMed  Google Scholar 

  8. Dienel GA (2013) Astrocytic energetics during excitatory neurotransmission: what are contributions of glutamate oxidation and glycolysis? Neurochem Int 63:244–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Robinson MB, Jackson JG (2016) Astroglial glutamate transporters coordinate excitatory signaling and brain energetics. Neurochem Int 98:56–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kreft M, Bak LK, Waagepetersen HS, Schousboe A (2012) Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation. ASN Neuro 4

  11. Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671

    Article  CAS  PubMed  Google Scholar 

  12. Meister A (1983) Selective modification of glutathione metabolism. Science 220:472–477

    Article  CAS  PubMed  Google Scholar 

  13. Hollman M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108

    Article  Google Scholar 

  14. Nakanishi S (1994) Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticity. Neuron 13:1031–1037

    Article  CAS  PubMed  Google Scholar 

  15. Nakanishi S (1992) Molecular diversity of glutamate receptors and implications for brain function. Science 258:597–603

    Article  CAS  PubMed  Google Scholar 

  16. Schoepp DD, Conn PJ (1993) Metabotropic glutamate receptors in brain function and pathology. Trends Pharmacol Sci 14:13–20

    Article  CAS  PubMed  Google Scholar 

  17. Conn PJ, Patel J (1994) The metabotropic glutamate receptors. Humana Press, Totowa

    Book  Google Scholar 

  18. Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61

    CAS  PubMed  Google Scholar 

  19. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tang CM, Dichter M, Morad M (1989) Quisqualate activates a rapidly inactivating high conductance ionic channel in hippocampal neurons. Science 243:1474–1477

    Article  CAS  PubMed  Google Scholar 

  22. Raman IM, Trussell LO (1992) The kinetics of the response to glutamate and kainate in neurons of the avian cochlear nucleus. Neuron 9:173–186

    Article  CAS  PubMed  Google Scholar 

  23. Kleppe IC, Robinson HP (1999) Determining the activation time course of synaptic AMPA receptors from openings of colocalized NMDA receptors. Biophys J 77:1418–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Scimemi A, Beato M (2009) Determining the neurotransmitter concentration profile at active synapses. Mol Neurobiol 40:289–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vance KM, Simorowski N, Traynelis SF, Furukawa H (2011) Ligand-specific deactivation time course of GluN1/GluN2D NMDA receptors. Nat Commun 2:294

    Article  PubMed  Google Scholar 

  26. Hansen KB, Yi F, Perszyk RE, Furukawa H, Wollmuth LP, Gibb AJ, Traynelis SF (2018) Structure, function, and allosteric modulation of NMDA receptors. J Gen Physiol 150:1081–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reiner A, Levitz J (2018) Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Neuron 98:1080–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Choi DW (1992) Excitotoxic cell death. J Neurobiol 23:1261–1276

    Article  CAS  PubMed  Google Scholar 

  29. Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    Article  CAS  PubMed  Google Scholar 

  30. Faden AI, Demediuk P, Panter SS, Vink R (1989) The role of excitatatory amino acids and NMDA receptors in traumatic brain injury. Science 244:798–800

    Article  CAS  PubMed  Google Scholar 

  31. Greene JG, Greenamyre JT (1996) Bioenergetics and glutamate excitotoxicity. Prog Neurobiol 48:613–634

    Article  CAS  PubMed  Google Scholar 

  32. Lewerenz J, Maher P (2015) Chronic glutamate toxicity in neurodegenerative diseases—what is the evidence? Front NeuroSci 9:469

    Article  PubMed  PubMed Central  Google Scholar 

  33. O’Donovan SM, Sullivan CR, McCullumsmith RE (2017) The role of glutamate transporters in the pathophysiology of neuropsychiatric disorders. NPJ Schizophr 3:32

    Article  PubMed  PubMed Central  Google Scholar 

  34. Uno Y, Coyle JT (2019) Glutamate hypothesis in schizophrenia. Psychiatry Clin Neurosci 73:204–215

    Article  PubMed  Google Scholar 

  35. Butcher SP, Hamberger A (1987) In vivo studies on the extracellular, and veratrine-releasable, pools of endogenous amino acids in the rat striatum: effects of corticostriatal deafferentation and kainic acid lesion. J Neurochem 48:713–721

    Article  CAS  PubMed  Google Scholar 

  36. Butcher SP, Sandberg M, Hagberg H, Hamberger A (1987) Cellular origins of endogenous amino acids released into the extracellular fluid of the rat striatum during severe insulin-induced hypoglycemia. J Neurochem 48:722–728

    Article  CAS  PubMed  Google Scholar 

  37. van der Zeyden M, Oldenziel WH, Rea K, Cremers TI, Westerink BH (2008) Microdialysis of GABA and glutamate: analysis, interpretation and comparison with microsensors. Pharmacol Biochem Behav 90:135–147

    Article  PubMed  Google Scholar 

  38. Herman MA, Jahr CE (2007) Extracellular glutamate concentration in hippocampal slice. J Neurosci 27:9736–9741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moussawi K, Riegel A, Nair S, Kalivas PW (2011) Extracellular glutamate: functional compartments operate in different concentration ranges. Front Syst Neurosci 5:94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Herman MA, Nahir B, Jahr CE (2011) Distribution of extracellular glutamate in the neuropil of hippocampus. PloS one 6:e26501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N, Kuncl RW (1994) Localization of neuronal and glial glutamate transporters. Neuron 13:713–725

    Article  CAS  PubMed  Google Scholar 

  42. Sims KD, Robinson MB (1999) Expression patterns and regulation of glutamate transporters in the developing and adult nervous system. Crit Rev Neurobiol 13:169–197

    Article  CAS  PubMed  Google Scholar 

  43. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  44. Chaudhry FA, Lehre KP, Campagne MVL, Ottersen OP, Danbolt NC, Storm-Mathisen J (1995) Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron 15:711–720

    Article  CAS  PubMed  Google Scholar 

  45. Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC (1995) Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci 15:1835–1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Derouiche A, Rauen T (1995) Coincidence of L-glutamate/L-aspartate transporter (GLAST) and glutamine synthetase (GS) immunoreactions in retinal glia: evidence for coupling of GLAST and GS in transmitter clearance. J Neurosci Res 42:131–143

    Article  CAS  PubMed  Google Scholar 

  47. Pow DV, Barnett NL (1999) Changing patterns of spatial buffering of glutamate in developing rat retinae are mediated by the Muller cell glutamate transporter GLAST. Cell Tissue Res 297:57–66

    Article  CAS  PubMed  Google Scholar 

  48. Furuta A, Rothstein JD, Martin LJ (1997) Glutamate transporter protein subtypes are expressed differentially during rat central nervous system development. J Neurosci 17:8363–8375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bar-Peled O, Ben-Hur H, Biegon A, Groner Y, Dewhurts S, Furata A, Rothstein JD (1997) Distribution of glutamate transporter subtypes during human brain development. J Neurochem 69:2571–2580

    Article  CAS  PubMed  Google Scholar 

  50. Conti F, DiBiasi S, Minelli A, Rothstein JD, Melone M (1998) EAAC1, a high-affinity glutamate transporter, is localized to astrocytes and gabaergic neurons besides pyramidal cells in the rat cerebral cortex. Cereb Cortex 8:108–116

    Article  CAS  PubMed  Google Scholar 

  51. Kugler P, Schmitt A (1999) Glutamate transporter EAAC! is expressed in neurons and glial cells in the rat nervous system. Glia 27:129–142

    Article  CAS  PubMed  Google Scholar 

  52. Lane MC, Jackson JG, Krizman EN, Rothstein JD, Porter BE, Robinson MB (2014) Genetic deletion of the neuronal glutamate transporter, EAAC1, results in decreased neuronal death after pilocarpine-induced status epilepticus. Neurochem Int 73:152–158

    Article  CAS  PubMed  Google Scholar 

  53. Holmseth S, Dehnes Y, Bjornsen LP, Boulland JL, Furness DN, Bergles D, Danbolt NC (2005) Specificity of antibodies: unexpected cross-reactivity of antibodies directed against the excitatory amino acid transporter 3 (EAAT3). Neuroscience 136:649–660

    Article  CAS  PubMed  Google Scholar 

  54. Holmseth S, Dehnes Y, Huang YH, Follin-Arbelet VV, Grutle NJ, Mylonakou MN, Plachez C, Zhou Y, Furness DN, Bergles DE, Lehre KP, Danbolt NC (2012) The density of EAAC1 (EAAT3) glutamate transporters expressed by neurons in the mammalian CNS. J Neurosci 32:6000–6013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yamada K, Watanabe M, Shibata T, Tanaka K, Wada K, Inoue Y (1996) EAAT4 is a post-synaptic glutamate transporters in Purkinje cell synapses. Neuroreport 7:2013–2017

    Article  CAS  PubMed  Google Scholar 

  56. Dehnes Y, Chaudhry FA, Ullensvang K, Lehre KP, Storm-Mathisen J, Danbolt NC (1998) The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in the parts of the dendritic membrane facing astroglia. J Neurosci 18:3606–3610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lin C-LG, Tzingounis AV, Jin L, Furuta A, Kavanaugh MP, Rothstein JD (1998) Molecular cloning and expression of the rat EAAT4 glutamate transporter subtype. Mol Brain Res 63:174–179

    Article  CAS  PubMed  Google Scholar 

  58. Dalet A, Bonsacquet J, Gaboyard-Niay S, Calin-Jageman I, Chidavaenzi RL, Venteo S, Desmadryl G, Goldberg JM, Lysakowski A, Chabbert C (2012) Glutamate transporters EAAT4 and EAAT5 are expressed in vestibular hair cells and calyx endings. PLoS ONE 7:e46261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Arriza JL, Eliasof S, Kavanaugh MP, Amara SG (1997) Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci USA 94:4155–4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Eliasof S, Arriza JL, Leighton BH, Kavanaugh MP, Amara SG (1998) Excitatory amino acid transporters of the salamander retina: identification, localization, and function. J Neurosci 15:698–712

    Article  Google Scholar 

  61. Pow DV, Barnett NL (2000) Developmental expression of excitatory amino acid transporter 5: a photoreceptor and bipolar cell glutamate transporter in rat retina. Neurosci Lett 280:21–24

    Article  CAS  PubMed  Google Scholar 

  62. Lee A, Balcar VJ, McCombe P, Pow DV (2020) Human brain neurons express a novel splice variant of excitatory amino acid transporter 5 (hEAAT5v). J Comp Neurol 528:3134–3142

    Article  CAS  PubMed  Google Scholar 

  63. Wersinger E, Schwab Y, Sahel JA, Rendon A, Pow DV, Picaud S, Roux MJ (2006) The glutamate transporter EAAT5 works as a presynaptic receptor in mouse rod bipolar cells. J Physiol 577:221–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zerangue N, Kavanaugh MP (1996) Flux coupling in a neuronal glutamate transporter. Nature 383:634–637

    Article  CAS  PubMed  Google Scholar 

  65. Levy LM, Warr O, Attwell D (1998) Stoichiometry of the glial glutamte transporter GLT-1 expressed inducibly in a chinese hamster ovary cell line selected for low endogenous Na+-dependent glutamate uptake. J Neurosci 18:9620–9628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Owe SG, Marcaggi P, Attwell D (2006) The ionic stoichiometry of the GLAST glutamate transporter in salamander retinal glia. J Physiol 577:591–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fairman WA, Vandenberg RJ, Arriza JL, Kavanaugh MP, Amara SG (1995) An excitatory amino acid transporter with properties of a ligand-gated chloride channel. Nature 375:599–603

    Article  CAS  PubMed  Google Scholar 

  68. Seal RP, Amara SG (1999) Excitatory amino acid transporters: a family in flux. Annu Rev Pharmacol Toxicol 39:431–456

    Article  CAS  PubMed  Google Scholar 

  69. Ryan RM, Vandenberg RJ (2005) A channel in a transporter. Clin Exp Pharmacol Physiol 32:1–6

    Article  PubMed  Google Scholar 

  70. Vandenberg RJ, Ryan RM (2013) Mechanisms of glutamate transport. Physiol Rev 93:1621–1657

    Article  CAS  PubMed  Google Scholar 

  71. Grewer C, Rauen T (2005) Electrogenic glutamate transporters in the CNS: molecular mechanism, pre-steady-state kinetics, and their impact on synaptic signaling. J Membr Biol 203:1–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tzingounis AV, Wadiche JI (2007) Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nat Rev Neurosci 8:935–947

    Article  CAS  PubMed  Google Scholar 

  73. Bergles DE, Jahr CE (1997) Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron 19:1297–1308

    Article  CAS  PubMed  Google Scholar 

  74. Gameiro A, Braams S, Rauen T, Grewer C (2011) The discovery of slowness: low-capacity transport and slow anion channel gating by the glutamate transporter EAAT5. Biophys J 100:2623–2632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Grewer C, Watzke N, Wiessner M, Rauen T (2000) Glutamate translocation of the neuronal glutamate transporter EAAC1 occurs within milliseconds. Proc Natl Acad Sci U S A 97:9706–9711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wadiche JI, Kavanaugh MP (1998) Macroscopic and microscopic properties of a cloned glutamate transporter/chloride channel. J Neurosci 18:7650–7661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rosenberry TL (1975) Acetylcholinesterase. Adv Enzymol Relat Areas Mol Biol 43:103–218

    CAS  PubMed  Google Scholar 

  78. Antosiewicz J, Gilson MK, Lee IH, McCammon JA (1995) Acetylcholinesterase: diffusional encounter rate constants for dumbbell models of ligand. Biophys J 68:62–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lehre KP, Danbolt NC (1998) The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J Neurosci 18:8751–8757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tong G, Jahr CE (1994) Block of glutamate transporters potentiates postsynaptic excitation. Neuron 13:1195–1203

    Article  CAS  PubMed  Google Scholar 

  81. Murphy-Royal C, Dupuis JP, Varela JA, Panatier A, Pinson B, Baufreton J, Groc L, Oliet SH (2015) Surface diffusion of astrocytic glutamate transporters shapes synaptic transmission. Nat Neurosci 18:219–226

    Article  CAS  PubMed  Google Scholar 

  82. Conti F, Weinberg RJ (1999) Shaping excitation at glutamatergic synapses. Trends Neurosci 22:451–458

    Article  CAS  PubMed  Google Scholar 

  83. Rose CR, Felix L, Zeug A, Dietrich D, Reiner A, Henneberger C (2017) Astroglial glutamate signaling and uptake in the hippocampus. Front Mol Neurosci 10:451

    Article  PubMed  Google Scholar 

  84. Valtcheva S, Venance L (2019) Control of long-term plasticity by glutamate transporters. Front Synaptic Neurosci 11:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rossi DJ, Oshima T, Attwell D (2000) Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403:316–321

    Article  CAS  PubMed  Google Scholar 

  86. Kawahara K, Kosugi T, Tanaka M, Nakajima T, Yamada T (2005) Reversed operation of glutamate transporter GLT-1 is crucial to the development of preconditioning-induced ischemic tolerance of neurons in neuron/astrocyte co-cultures. Glia 49:349–359

    Article  PubMed  Google Scholar 

  87. Camacho A, Massieu L (2006) Role of glutamate transporters in the clearance and release of glutamate during ischemia and its relation to neuronal death. Arch Med Res 37:11–18

    Article  CAS  PubMed  Google Scholar 

  88. Zhang LN, Hao L, Guo YS, Wang HY, Li LL, Liu LZ, Li WB (2019) Are glutamate transporters neuroprotective or neurodegenerative during cerebral ischemia? J Mol Med (Berl) 97:281–289

    Article  CAS  Google Scholar 

  89. Gegelashvili G, Schousboe A (1997) High affinity glutamate transporters: regulation of expression and activity. Mol Pharmacol 52:6–15

    Article  CAS  PubMed  Google Scholar 

  90. Robinson MB, Dowd LA (1997) Heterogeneity and functional properties of subtypes of sodium-dependent glutamate transporters in the mammalian central nervous system. Adv Pharmacol 37:69–115

    Article  CAS  PubMed  Google Scholar 

  91. Trotti D, Danbolt NC, Volterra A (1998) Glutamate transporters are oxidant-vulnerable: a molecular link between oxidative and excitotoxic neurodegeneration. Trends Pharmacol Sci 19:328–334

    Article  CAS  PubMed  Google Scholar 

  92. Robinson MB (1999) The family of sodium-dependent glutamate transporters: A focus on the GLT-1/EAAT2 subtype. Neurochem Int 33:479–491

    Article  Google Scholar 

  93. Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32:1–14

    Article  CAS  PubMed  Google Scholar 

  94. Gegelashgvili G, Robinson MB, Trotti D, Rauen T (2001) Regulation of glutamate transporters in health and disease. Prog Brain Res 132:267–286

    Article  Google Scholar 

  95. Shigeri Y, Seal RP, Shimamoto K (2004) Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Res Rev 45:250–265

    Article  CAS  PubMed  Google Scholar 

  96. Dunlop J (2006) Glutamate-based therapeutic approaches: targeting the glutamate transport system. Curr Opin Pharmacol 6:103–107

    Article  CAS  PubMed  Google Scholar 

  97. Kanner BI (2006) Structure and function of sodium-coupled GABA and glutamate transporters. J Membr Biol 213:89–100

    Article  CAS  PubMed  Google Scholar 

  98. Sattler R, Rothstein JD (2006) Regulation and dysregulation of glutamate transporters. Handb Exp Pharmacol:277–303

  99. Yi JH, Hazell AS (2006) Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int 48:394–403

    Article  CAS  PubMed  Google Scholar 

  100. Beart PM, O’Shea RD (2007) Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 150:5–17

    Article  CAS  PubMed  Google Scholar 

  101. Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51:333–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kim K, Lee SG, Kegelman TP, Su ZZ, Das SK, Dash R, Dasgupta S, Barral PM, Hedvat M, Diaz P, Reed JC, Stebbins JL, Pellecchia M, Sarkar D, Fisher PB (2011) Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. Journal of cellular physiology 226:2484–2493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bridges R, Lutgen V, Lobner D, Baker DA (2012) Thinking outside the cleft to understand synaptic activity: contribution of the cystine-glutamate antiporter (System xc-) to normal and pathological glutamatergic signaling. Pharmacol Rev 64:780–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bridges RJ, Natale NR, Patel SA (2012) System xc(-) cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. Br J Pharmacol 165:20–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, Massie A, Smolders I, Methner A, Pergande M, Smith SB, Ganapathy V, Maher P (2013) The cystine/glutamate antiporter system x(c)(-) in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal 18:522–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Martinez-Lozada Z, Guillem AM, Robinson MB (2016) Transcriptional regulation of glutamate transporters: from extracellular signals to transcription factors. Adv Pharmacol 76:103–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Murphy-Royal C, Dupuis J, Groc L, Oliet SHR (2017) Astroglial glutamate transporters in the brain: Regulating neurotransmitter homeostasis and synaptic transmission. J Neurosci Res 95:2140–2151

    Article  CAS  PubMed  Google Scholar 

  108. Magi S, Piccirillo S, Amoroso S, Lariccia V (2019) Excitatory amino acid transporters (EAATs): glutamate transport and beyond. Int J Mol Sci 20

  109. Robinson MB, Lee ML, DaSilva S (2020) Glutamate transporters and mitochondria: signaling, co-compartmentalization, functional coupling, and future directions. Neurochem Res 45:526–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Peterson AR, Binder DK (2019) Post-translational regulation of GLT-1 in neurological diseases and its potential as an effective therapeutic target. Front Mol Neurosci 12:164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gegelashvili G, Danbolt NC, Schousboe A (1997) Neuronal soluble factors differentially regulate the expression of the GLT1 and GLAST glutamate transporters in cultured astroglia. J Neurochem 69:2612–2615

    Article  CAS  PubMed  Google Scholar 

  112. Swanson RA, Liu J, Miller JW, Rothstein JD, Farrell K, Stein BA, Longuemare MC (1997) Neuronal regulation of glutamate transporter subtype expression in astrocytes. J Neurosci 17:932–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Schlag BD, Vondrasek JR, Munir M, Kalandadze A, Zelenaia OA, Rothstein JD, Robinson MB (1998) Regulation of the glial Na+-dependent glutamate transporters by cyclic AMP analogs and neurons. Mol Pharmacol 53:355–369

    Article  CAS  PubMed  Google Scholar 

  114. Yang Y, Gozen O, Watkins A, Lorenzini I, Lepore A, Gao Y, Vidensky S, Brennan J, Poulsen D, Won Park J, Li Jeon N, Robinson MB, Rothstein JD (2009) Presynaptic regulation of astroglial excitatory neurotransmitter transporter GLT1. Neuron 61:880–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lee ML, Martinez-Lozada Z, Krizman EN, Robinson MB (2017) Brain endothelial cells induce astrocytic expression of the glutamate transporter GLT-1 by a Notch-dependent mechanism. J Neurochem 143:489–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Martinez-Lozada Z, Robinson MB (2020) Reciprocal communication between astrocytes and endothelial cells is required for astrocytic glutamate transporter 1 (GLT-1) expression. Neurochem Int 139:104787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Arriza JL, Fairman WA, Wadiche JI, Murdoch GH, Kavanaugh MP, Amara SG (1994) Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J Neurosci 14:5559–5569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Benediktsson AM, Schachtele SJ, Green SH, Dailey ME (2005) Ballistic labeling and dynamic imaging of astrocytes in organotypic hippocampal slice cultures. J Neurosci Methods 141:41–53

    Article  PubMed  Google Scholar 

  119. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, Deng S, Liddelow SA, Zhang C, Daneman R, Maniatis T, Barres BA, Wu JQ (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34:11929–11947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Henn FA, Anderson DJ, Rustad DG (1976) Glial contamination of synaptosomal fractions. Brain Res 101:341–344

    Article  CAS  PubMed  Google Scholar 

  121. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–1702

    Article  CAS  PubMed  Google Scholar 

  122. Divac I, Fonnum F, Storm-Mathisen J (1977) High affinity uptake of glutamate in terminals of corticostriatal axons. Nature 266:377–378

    Article  CAS  PubMed  Google Scholar 

  123. Storm-Mathisen J (1977) Glutamic acid and excitatory nerve endings: reduction of glutamaic acid uptake after axotomy. Brain Res 120:379–386

    Article  CAS  PubMed  Google Scholar 

  124. Taxt T, Storm-Mathisen J (1984) Uptake of D-aspartate and L-glutamate in excitatory axon terminals in hippocampus: autoradiographic and biochemical comparisons with gamma-aminobutyrate and other amino acids in normal rats and rats with lesions. Neuroscience 11:79–100

    Article  CAS  PubMed  Google Scholar 

  125. Storm-Mathisen J (1977) Localization of transmitter candidates in the brain: the hippocampal formation as a model. Prog Neurobiol 8:119–181

    Article  CAS  PubMed  Google Scholar 

  126. Furness DN, Dehnes Y, Akhtar AQ, Rossi DJ, Hamann M, Grutle NJ, Gundersen V, Holmseth S, Lehre KP, Ullensvang K, Wojewodzic M, Zhou Y, Attwell D, Danbolt NC (2008) A quantitative assessment of glutamate uptake into hippocampal synaptic terminals and astrocytes: new insights into a neuronal role for excitatory amino acid transporter 2 (EAAT2). Neuroscience 157:80–94

    Article  CAS  PubMed  Google Scholar 

  127. Torp R, Danbolt NC, Babaie E, Bjoras M, Seeberg E, Storm-Mathisen J, Ottersen OP (1994) Differential expression of two glial glutamate transporters in the rat brain: An in situ hybridization study. Eur J Neurosci 6:936–942

    Article  CAS  PubMed  Google Scholar 

  128. Brooks-Kayal AR, Munir M, Jin H, Robinson MB (1998) The glutamate transporter, GLT-1, is expressed in cultured hippocampal neurons. Neurochem Int 33:95–100

    Article  CAS  PubMed  Google Scholar 

  129. Mennerick S, Dhond RP, Benz A, Xu W, Rothstein JD, Danbolt NC, Isenberg KE, Zorumski CF (1998) Neuronal expression of the glutamate transporter GLT-1 in hippocampal microcultures. J Neurosci 18:4490–4499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chen W, Aoki C, Mahadomrongkul V, Gruber CE, Wang GJ, Blitzblau R, Irwin N, Rosenberg PA (2002) Expression of a variant form of the glutamate transporter GLT1 in neuronal cultures and in neurons and astrocytes in the rat brain. J Neurosci 22:2142–2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Berger UV, DeSilva TM, Chen W, Rosenberg PA (2005) Cellular and subcellular mRNA localization of glutamate transporter isoforms GLT1a and GLT1b in rat brain by in situ hybridization. J Comp Neurol 492:78–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Petr GT, Sun Y, Frederick NM, Zhou Y, Dhamne SC, Hameed MQ, Miranda C, Bedoya EA, Fischer KD, Armsen W, Wang J, Danbolt NC, Rotenberg A, Aoki CJ, Rosenberg PA (2015) Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes. J Neurosci 35:5187–5201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhou Y, Hassel B, Eid T, Danbolt NC (2019) Axon-terminals expressing EAAT2 (GLT-1; Slc1a2) are common in the forebrain and not limited to the hippocampus. Neurochem Int 123:101–113

    Article  CAS  PubMed  Google Scholar 

  134. Danbolt NC, Furness DN, Zhou Y (2016) Neuronal vs glial glutamate uptake: Resolving the conundrum. Neurochem Int 98:29–45

    Article  CAS  PubMed  Google Scholar 

  135. Rimmele TS, Rosenberg PA (2016) GLT-1: The elusive presynaptic glutamate transporter. Neurochem Int 98:19–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dunlop J, Lou Z, Zhang Y, McIlvain HB (1999) Inducible expression and pharmacology of the human excitatory amino acid transporter 2 subtype of L-glutamate transporter. Br J Pharmacol 128:1485–1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Tan J, Zelenaia O, Rothstein JD, Robinson MB (1999) Expression of the GLT-1 subtype of Na+-dependent glutamate transporter: Pharmacological characterization and lack of regulation by protein kinase C. J Pharmacol Exp Ther 289:1600–1610

    CAS  PubMed  Google Scholar 

  138. Fontana ACK (2018) Protocols for Measuring Glutamate Uptake: Dose-Response and Kinetic Assays in In Vitro and Ex Vivo Systems. Curr Protoc Pharmacol 82:e45

    Article  PubMed  Google Scholar 

  139. Loder MK, Melikian HE (2003) The dopamine transporter constitutively internalizes and recycles in a protein kinase C-regulated manner in stably transfected PC12 cell lines. J Biol Chem 278:22168–22174

    Article  CAS  PubMed  Google Scholar 

  140. Jabaudon D, Scanziani M, Gähwiler BH, Gerber U (2000) Acute decrease in net glutamate upatke during energy failure. Proc Natl Acad Sci USA 97:5610–5615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Djukic B, Casper KB, Philpot BD, Chin LS, McCarthy KD (2007) Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced short-term synaptic potentiation. J Neurosci 27:11354–11365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kucheryavykh YV, Kucheryavykh LY, Nichols CG, Maldonado HM, Baksi K, Reichenbach A, Skatchkov SN, Eaton MJ (2007) Downregulation of Kir4.1 inward rectifying potassium channel subunits by RNAi impairs potassium transfer and glutamate uptake by cultured cortical astrocytes. Glia 55:274–281

    Article  CAS  PubMed  Google Scholar 

  143. Zhou Y, Wang X, Tzingounis AV, Danbolt NC, Larsson HP (2014) EAAT2 (GLT-1; slc1a2) glutamate transporters reconstituted in liposomes argues against heteroexchange being substantially faster than net uptake. J Neurosci 34:13472–13485

    Article  PubMed  PubMed Central  Google Scholar 

  144. Newton AC (2018) Protein kinase C: perfectly balanced. Crit Rev Biochem Mol Biol 53:208–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Brose N, Rosenmund C (2002) Move over protein kinase C, you’ve got company: alternative cellular effectors of diacylglycerol and phorbol esters. J Cell Sci 115:4399–4411

    Article  CAS  PubMed  Google Scholar 

  146. González MI, Ortega A (1997) Regulation of the Na+-dependent high affinity glutamate/aspartate transporter in cultured Bergmann glia by phorbol esters. J Neurosci Res 50:585–590

    Article  PubMed  Google Scholar 

  147. Bernabe A, Mendez JA, Hernandez-Kelly LC, Ortega A (2003) Regulation of the Na+-dependent glutamate/aspartate transporter in rodent cerebellar astrocytes. Neurochem Res 28:1843–1849

    Article  CAS  PubMed  Google Scholar 

  148. González MI, AM AML-C, Ortega A (1999) Sodium-dependent glutamate transport in Muller glial cells: regulation by phorbol esters. Brain Res 831:140–145

    Article  PubMed  Google Scholar 

  149. Wang Z, Li W, Mitchell CK, Carter-Dawson L (2003) Activation of protein kinase C reduces GLAST in the plasma membreane of rat Muller cells in primary culture. Vis Neurosci 20:611–619

    Article  PubMed  Google Scholar 

  150. Casado M, Zafra F, Aragón C, Giménez C (1991) Activation of high-affinity uptake of glutamate by phorbol esters in primary glial cell cultures. J Neurochem 57:1185–1190

    Article  CAS  PubMed  Google Scholar 

  151. Susarla BS, Seal RP, Zelenaia O, Watson DJ, Wolfe JH, Amara SG, Robinson MB (2004) Differential regulation of GLAST immunoreactivity and activity by protein kinase C: evidence for modification of amino and carboxy termini. J Neurochem 91:1151–1163

    Article  CAS  PubMed  Google Scholar 

  152. Sidoryk-Wegrzynowicz M, Lee E, Aschner M (2012) Mechanism of Mn(II)-mediated dysregulation of glutamine-glutamate cycle: focus on glutamate turnover. J Neurochem 122:856–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gosselin RD, Meylan P, Decosterd I (2013) Extracellular microvesicles from astrocytes contain functional glutamate transporters: regulation by protein kinase C and cell activation. Front Cell Neurosci 7:251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Adolph O, Koster S, Rath M, Georgieff M, Weigt HU, Engele J, Senftleben U, Fohr KJ (2007) Rapid increase of glial glutamate uptake via blockade of the protein kinase A pathway. Glia 55:1699–1707

    Article  PubMed  Google Scholar 

  155. Leonova J, Thorlin T, Eriksson NDA, Ronnback PS, Hansson L E (2001) Endothelin-1 decreases glutamate uptake in primary cultured rat astrocytes. American J Physiol Cell Physiol 281:C1495–C1503

    Article  CAS  Google Scholar 

  156. Guillet BA, Velly LJ, Canolle B, Nieoullon FMM, Pisano AL P (2005) Differential regulation by protein kinases of activity and cell surface expression of glutamate transporters in neuron-enriched cultures. Neurochem Int 46:337–346

    Article  CAS  PubMed  Google Scholar 

  157. Conradt M, Stoffel W (1997) Inhibition of the high-affinity brain glutamate transporter GLAST-1 via direct phosphorylation. J Neurochem 68:1244–1251

    Article  CAS  PubMed  Google Scholar 

  158. Yan X, Yadav R, Gao M, Weng HR (2014) Interleukin-1 beta enhances endocytosis of glial glutamate transporters in the spinal dorsal horn through activating protein kinase C. Glia 62:1093–1109

    Article  PubMed  PubMed Central  Google Scholar 

  159. Zhang Y, He X, Meng X, Wu X, Tong H, Zhang X, Qu S (2017) Regulation of glutamate transporter trafficking by Nedd4-2 in a Parkinson’s disease model. Cell Death Dis 8:e2574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ma S, Zheng X, Zheng T, Huang F, Jiang J, Luo H, Guo Q, Hu B (2019) Amitriptyline influences the mechanical withdrawal threshold in bone cancer pain rats by regulating glutamate transporter GLAST. Mol Pain 15:1744806919855834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Garcia-Tardon N, Gonzalez-Gonzalez IM, Martinez-Villarreal J, Fernandez-Sanchez E, Gimenez C, Zafra F (2012) Protein kinase C (PKC)-promoted endocytosis of glutamate transporter GLT-1 requires ubiquitin ligase Nedd4-2-dependent ubiquitination but not phosphorylation. J Biol Chem 287:19177–19187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Boehmer C, Henke G, Schniepp R, Palmada M, Rothsetin JD, Broer S, Lang F (2003) Regulation of the glutamate transporter EAAT1 by the ubiquitin ligase Nedd4-2 and the serum and glucocorticoid-inducible kinase isoforms SGK1/3 and protein kinase B. J Neurochem 86:1181–1188

    Article  CAS  PubMed  Google Scholar 

  163. Sun XL, Zeng XN, Zhou F, Dai CP, Ding JH, Hu G (2008) KATP channel openers facilitate glutamate uptake by GluTs in rat primary cultured astrocytes. Neuropsychopharmacology 33:1336–1342

    Article  CAS  PubMed  Google Scholar 

  164. Vermeiren C, Najimi M, Vanhoutte N, Tilleux S, Hemptinne Id, Maloteauz J-M, Hermans E (2005) Acute up-regulation of glutamate uptake mediated by mGluR5a in reactive astrocytes. J Neurochem 94:405–416

    Article  CAS  PubMed  Google Scholar 

  165. Vermeiren C, Hemptinne I, Vanhoutte N, Tilleux S, Maloteaux JM, Hermans E (2006) Loss of metabotropic glutamate receptor-mediated regulation of glutamate transport in chemically activated astrocytes in a rat model of amyotrophic lateral sclerosis. J Neurochem 96:719–731

    Article  CAS  PubMed  Google Scholar 

  166. Vergouts M, Doyen PJ, Peeters M, Opsomer R, Hermans E (2018) Constitutive downregulation protein kinase C epsilon in hSOD1(G93A) astrocytes influences mGluR5 signaling and the regulation of glutamate uptake. Glia 66:749–761

    Article  PubMed  Google Scholar 

  167. Pisano P, Samuel D, Nieoullon A, Goff LK-L (1996) Activation of the adenylate cyclase-dependent protein kinase pathway increases high affinity glutamate uptake into rat striatal synaptosomes. Neuropharmacology 35:541–547

    Article  CAS  PubMed  Google Scholar 

  168. Lu YM, Lu BF, Zhao FQ, Yan YL, Ho XP (1993) Accumulation of glutamate is regulated by calcium and protein kinase C in rat hippocampal slices exposed to ischemic states. Hippocampus 3:221–227

    Article  CAS  PubMed  Google Scholar 

  169. Daniels KK, Vickroy TW (1999) Reversible activation of glutamate transport in rat brain glia by protein kinase C and an okadaic acid-sensitive phosphoprotein phosphatase. Neurochem Res 24:1017–1025

    Article  CAS  PubMed  Google Scholar 

  170. Hoogland G, Bos IW, Kupper F, van Willigen G, Spierenburg HA, van Nieuwenhuizen O, de Graan PN (2005) Thrombin-stimulated glutamate uptake in human platelets is predominantly mediated by the glial glutamate transporter EAAT2. Neurochem Int 47:499–506

    Article  CAS  PubMed  Google Scholar 

  171. Chen T, Tanaka M, Wang Y, Sha S, Furuya K, Chen L, Sokabe M (2017) Neurosteroid dehydroepiandrosterone enhances activity and trafficking of astrocytic GLT-1 via sigma1 receptor-mediated PKC activation in the hippocampal dentate gyrus of rats. Glia 65:1491–1503

    Article  PubMed  Google Scholar 

  172. Ganel R, Crosson CE (1998) Modulation of human glutamate transporter activity by phorbol ester. J Neurochem 70:993–1000

    Article  CAS  PubMed  Google Scholar 

  173. Kalandadze A, Wu Y, Robinson MB (2002) Protein kinase C activation decreases cell surface expression of the GLT-1 subtype of glutamate transporter. Requirement of a carboxyl-terminal domain and partial dependence on serine 486. J Biol Chem 277:45741–45750

    Article  CAS  PubMed  Google Scholar 

  174. Fang H, Huang Y, Zuo Z (2002) The different responses of rat glutamate transporter type 2 and its mutant (tyrosine 403 to histidine) activity to volatile anesthetics and activation of protein kinase C. Brain Res 953:255–264

    Article  CAS  PubMed  Google Scholar 

  175. Najimi M, Stephenne X, Sempoux C, Sokal E (2014) Regulation of hepatic EAAT-2 glutamate transporter expression in human liver cholestasis. World J Gastroenterol 20:1554–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Wang Y, Lu S, Qu Z, Wu L, Wang Y (2017) Sonic hedgehog induces GLT-1 degradation via PKC delta to suppress its transporter activities. Neuroscience 365:217–225

    Article  CAS  PubMed  Google Scholar 

  177. Zhou J, Sutherland ML (2004) Glutamate transporter cluster formation in astrocytic processes regulates glutamate uptake activity. J Neurosci 24:6301–6306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. González MI, Susarla BTS, Robinson MB (2005) Evidence that protein kinase Ca interacts with an regulates the glial glutamate transporter GLT-1. J Neurochem 94:1180–1188

    Article  PubMed  Google Scholar 

  179. Gonzalez-Gonzalez IM, Garcia-Tardon N, Gimenez C, Zafra F (2008) PKC-dependent endocytosis of the GLT1 glutamate transporter depends on ubiquitylation of lysines located in a C-terminal cluster. Glia 56:963–974

    Article  PubMed  Google Scholar 

  180. Sheldon AL, Gonzalez MI, Krizman-Genda EN, Susarla BT, Robinson MB (2008) Ubiquitination-mediated internalization and degradation of the astroglial glutamate transporter, GLT-1. Neurochem Int 53:296–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Boehmer C, Palmanda M, Rajamanickam J, Schneipp R, Amara S, Lang F (2006) Post-translational regulation of EAAT2 function by co-expressed ubiquitin ligase Nedd4-2 is impacted by SGK kinases. J Neurochem 97:911–921

    Article  CAS  PubMed  Google Scholar 

  182. Martinez-Villarreal J, Garcia Tardon N, Ibanez I, Gimenez C, Zafra F (2012) Cell surface turnover of the glutamate transporter GLT-1 is mediated by ubiquitination/deubiquitination. Glia 60:1356–1365

    Article  PubMed  Google Scholar 

  183. Perez-Jimenez E, Viana R, Munoz-Ballester C, Vendrell-Tornero C, Moll-Diaz R, Garcia-Gimeno MA, Sanz P (2020) Endocytosis of the glutamate transporter 1 is regulated by laforin and malin: Implications in Lafora disease. Glia

  184. Susarla BT, Robinson MB (2008) Internalization and degradation of the glutamate transporter GLT-1 in response to phorbol ester. Neurochem Int 52:709–722

    Article  CAS  PubMed  Google Scholar 

  185. Guo S, Zhang X, Zheng M, Zhang X, Min C, Wang Z, Cheon SH, Oak MH, Nah SY, Kim KM (2015) Selectivity of commonly used inhibitors of clathrin-mediated and caveolae-dependent endocytosis of G protein-coupled receptors. Biochim Biophys Acta 1848:2101–2110

    Article  CAS  PubMed  Google Scholar 

  186. Cremona ML, Matthies HJ, Pau K, Bowton E, Speed N, Lute BJ, Anderson M, Sen N, Robertson SD, Vaughan RA, Rothman JE, Galli A, Javitch JA, Yamamoto A (2011) Flotillin-1 is essential for PKC-triggered endocytosis and membrane microdomain localization of DAT. Nat Neurosci 14:469–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Sorkina T, Caltagarone J, Sorkin A (2013) Flotillins regulate membrane mobility of the dopamine transporter but are not required for its protein kinase C dependent endocytosis. Traffic 14:709–724

    Article  PubMed  PubMed Central  Google Scholar 

  188. Butchbach ME, Tian G, Guo H, Lin CL (2004) Association of excitatory amino acid transporters, especially EAAT2, with cholesterol-rich lipid raft microdomains: importance for EAAT localization and function. J Biol Chem

  189. Huang HT, Liao CK, Chiu WT, Tzeng SF (2017) Ligands of peroxisome proliferator-activated receptor-alpha promote glutamate transporter-1 endocytosis in astrocytes. Int J Biochem Cell Biol 86:42–53

    Article  CAS  PubMed  Google Scholar 

  190. Casado M, Bendahan A, Zafra F, Danbolt NC, Gimenez C, Kanner BI (1993) Phosphorylation and modulation of brain glutamate transporters by protein kinase C. J Biol Chem 268:27313–27317

    Article  CAS  PubMed  Google Scholar 

  191. Dowd LA, Coyle AJ, Rothstein JD, Pritchett DB, Robinson MB (1996) Comparison of Na+-dependent glutamate transport activity in synaptosomes, C6 glioma, and Xenopus Oocytes expressing excitatory amino acid carrier 1 (EAAC1). Mol Pharmacol 49:465–473

    CAS  PubMed  Google Scholar 

  192. Davis KE, Straff DJ, Weinstein EA, Bannerman PG, Correale DM, Rothstein JD, Robinson MB (1998) Multiple signaling pathways regulate cell surface expression and activity of the excitatory amino acid carrier 1 subtype of Glu transporter in C6 glioma. J Neurosci 18:2475–2485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Dowd LA, Robinson MB (1996) Rapid stimulation of EAAC1-mediated Na+-dependent L-glutamate transport activity in C6 glioma by phorbol ester. J Neurochem 67:508–516

    Article  CAS  PubMed  Google Scholar 

  194. Bianchi MG, Rotoli BM, Dall’Asta V, Gazzola GC, Gatti R, Bussolati O (2006) PKC-dependent stimulation of EAAT3 glutamate transporter does not require the integrity of actin cytoskeleton. Neurochem Int 48:341–349

    Article  CAS  PubMed  Google Scholar 

  195. Sheldon AL, Gonzalez MI, Robinson MB (2006) A carboxyl-terminal determinant of the neuronal glutamate transporter, EAAC1, is required for platelet-derived growth factor-dependent trafficking. J Biol Chem 281:4876–4886

    Article  CAS  PubMed  Google Scholar 

  196. Murphy A, Vines A, McBean GJ (2009) Stimulation of EAAC1 in C6 glioma cells by store-operated calcium influx. Biochim Biophys Acta 1788:551–558

    Article  CAS  PubMed  Google Scholar 

  197. Watabe M, Aoyama K, Nakaki T (2007) Regulation of glutathione synthesis via interaction between glutamate transport-associated protein 3–18 (GTRAP3-18) and excitatory amino acid carrier-1 (EAAC1) at plasma membrane. Mol Pharmacol 72:1103–1110

    Article  CAS  PubMed  Google Scholar 

  198. Foster DJ, Heacock AM, Fisher SK (2010) Muscarinic receptor stimulation of D-aspartate uptake into human SH-SY5Y neuroblastoma cells is attenuated by hypoosmolarity. J Pharmacol Exp Ther 333:297–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Fournier KM, González MI, Robinson MB (2004) Rapid trafficking of the neuronal glutamate transporter, EAAC1: Evidence for distinct trafficking pathways differentially regulated by protein kinase C and platelet-derived growth factor. J Biol Chem 279:34505–34513

    Article  CAS  PubMed  Google Scholar 

  200. Huang Y, Zuo Z (2005) Isoflurane induces a protein kinase Ca-dependent increase in cell surface protein level and activity of glutamate transporter type 3. Mol Pharmacol 67:1522–1533

    Article  CAS  PubMed  Google Scholar 

  201. Sims KD, Straff DJ, Robinson MB (2000) Platelet-derived growth factor rapidly increases activity and cell surface expression of the EAAC1 subtype of glutamate transporters through activation of phosphatidylinositol 3-kinase. J Biol Chem 274:5228–5327

    Article  Google Scholar 

  202. Najimi M, Maloteaux JM, Hermans E (2002) Cytoskeleton-related trafficking of the EAAC1 glutamate transporter after activation of the G(q/11)-coupled neurotensin receptor NTS1. FEBS Lett 523:224–228

    Article  CAS  PubMed  Google Scholar 

  203. Najimi M, Maloteaux J-M, Hermans E (2005) Pertussis toxin-sensitive modulation of glutamate transport by endothelin-1 type A receptors in glioma cells. Biochem Biophys Acta 1668:195–202

    Article  CAS  PubMed  Google Scholar 

  204. Yu YX, Shen L, Xia P, Tang YW, Bao L, Pei G (2006) Syntaxin 1A promotes the endocytic sorting of EAAC1 leading to inhibition of glutamate transport. J Cell Sci 119:3776–3787

    Article  CAS  PubMed  Google Scholar 

  205. Shepherd JD, Huganir RL (2007) The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu Rev Cell Dev Biol 23:613–643

    Article  CAS  PubMed  Google Scholar 

  206. Evans AJ, Gurung S, Henley JM, Nakamura Y, Wilkinson KA (2019) Exciting times: new advances towards understanding the regulation and roles of kainate receptors. Neurochem Res 44:572–584

    Article  CAS  PubMed  Google Scholar 

  207. Bryant NJ, Govers R, James DE (2002) Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol 3:267–277

    Article  CAS  PubMed  Google Scholar 

  208. Watson RT, Kanzaki M, Pessin JE (2004) Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. Endocr Rev 25:177–204

    Article  CAS  PubMed  Google Scholar 

  209. Dugani CB, Klip A (2005) Glucose transporter 4: cycling, compartments and controversies. EMBO Rep 6:1137–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. González MI, Kazanietz MG, Robinson MB (2002) Regulation of the neuronal glutamate transporter excitatory amino acid carrier-1 (EAAC1) by different protein kinase C subtypes. Mol Pharmacol 62:901–910

    Article  PubMed  Google Scholar 

  211. Lin C-LG, Orlov I, Ruggiero AM, Dykes-Hoberg M, Lee A, Jackson M, Rothstein JD (2001) Modulation of the neuronal glutamate transporter EAAC1 by the interacting protein GTRAP3-18. Nature 410:84–88

    Article  CAS  PubMed  Google Scholar 

  212. Butchbach ME, Lai L, Lin CL (2002) Molecular cloning, gene structure, expression profile and functional characterization of the mouse glutamate transporter (EAAT3) interacting protein GTRAP3-18. Gene 292:81–90

    Article  CAS  PubMed  Google Scholar 

  213. Watabe M, Aoyama K, Nakaki T (2008) A dominant role of GTRAP3-18 in neuronal glutathione synthesis. J Neurosci 28:9404–9413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Ikemoto MJ, Inoue K, Akiduki S, Osugi T, Imamura T, Ishida N, Ohtomi M (2002) Identification of addicsin/GTRAP3-18 as a chronic morphine-augmented gene in amygdala. Neuroreport 13:2079–2084

    Article  CAS  PubMed  Google Scholar 

  215. Akiduki S, Ikemoto MJ (2008) Modulation of the neural glutamate transporter EAAC1 by the addicsin-interacting protein ARL6IP1. J Biol Chem 283:31323–31332

    Article  CAS  PubMed  Google Scholar 

  216. González MI, Bannerman PG, Robinson MB (2003) Phorbol myristate acetate-dependent interaction of protein kinase Ca and the neuronal glutamate transporter EAAC1. J Neurosci 23:5589–5593

    Article  PubMed  PubMed Central  Google Scholar 

  217. Huang Y, Feng X, Sando JJ, Zuo Z (2006) Critical role of serine 465 in isoflurane-induced increase of cell-surface redistribution and activity of glutamate transporter type 3. J Biol Chem 281:38133–38138

    Article  CAS  PubMed  Google Scholar 

  218. Baik HJ, Huang Y, Washington JM, Zuo Z (2009) Critical role of s465 in protein kinase C-increased rat glutamate transporter type 3 activity. Int J Neurosci 119:1419–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Huang Y, Li L, Washington JM, Xu X, Sando JJ, Lin D, Zuo Z (2011) Inhibition of isoflurane-induced increase of cell-surface redistribution and activity of glutamate transporter type 3 by serine 465 sequence-specific peptides. Eur J Pharmacol 655:16–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Trotti D, Peng J-B, Dunlop J, Hediger MA (2001) Inhibition of the glutamate transporter EAAC1 expressed in Xenopus oocytes by phorbol esters. Brain Res 914:196–203

    Article  CAS  PubMed  Google Scholar 

  221. Padovano V, Massari S, Mazzucchelli S, Pietrini G (2009) PKC induces internalization and retention of the EAAC1 glutamate transporter in recycling endosomes of MDCK cells. Am J Physiol Cell Physiol 297:C835–C844

    Article  CAS  PubMed  Google Scholar 

  222. D’Amico A, Soragna A, Di Cairano E, Panzeri N, Anzai N, Vellea Sacchi F, Perego C (2010) The surface density of the glutamate transporter EAAC1 is controlled by interactions with PDZK1 and AP2 adaptor complexes. Traffic 11:1455–1470

    Article  PubMed  Google Scholar 

  223. Cheng C, Glover G, Banker G, Amara SG (2002) A novel sorting motif in the glutamate transporter excitatory amino acid transporter 3 directs its targeting in Madin-Darby canine kidney cells and hippocampal neurons. J Neurosci 22:10643–10652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Su JF, Wei J, Li PS, Miao HH, Ma YC, Qu YX, Xu J, Qin J, Li BL, Song BL, Xu ZP, Luo J (2016) Numb directs the subcellular localization of EAAT3 through binding the YxNxxF motif. J Cell Sci 129:3104–3114

    CAS  PubMed  Google Scholar 

  225. Malik AR, Szydlowska K, Nizinska K, Asaro A, van Vliet EA, Popp O, Dittmar G, Fritsche-Guenther R, Kirwan JA, Nykjaer A, Lukasiuk K, Aronica E, Willnow TE (2019) SorCS2 controls functional expression of amino acid transporter EAAT3 and protects neurons from oxidative stress and epilepsy-induced pathology. Cell Rep 26:2792–2804 (e2796)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Underhill SM, Wheeler DS, Li M, Watts SD, Ingram SL, Amara SG (2014) Amphetamine modulates excitatory neurotransmission through endocytosis of the glutamate transporter EAAT3 in dopamine neurons. Neuron 83:404–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Underhill SM, Colt MS, Amara SG (2020) Amphetamine Stimulates Endocytosis of the Norepinephrine and Neuronal Glutamate Transporters in Cultured Locus Coeruleus Neurons. Neurochem Res 45:1410–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Chen Y, Swanson RA (2003) The glutamate transporters EAAT2 and EAAT3 mediate cysteine uptake in cortical neuron cultures. J Neurochem 84:1332–1339

    Article  CAS  PubMed  Google Scholar 

  229. Aoyama K, Suh SW, Hamby AM, Liu J, Chan WY, Chen Y, Swanson RA (2006) Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse. Nat Neurosci 9:119–126

    Article  CAS  PubMed  Google Scholar 

  230. Aoyama K, Watabe M, Nakaki T (2012) Modulation of neuronal glutathione synthesis by EAAC1 and its interacting protein GTRAP3-18. Amino Acids 42:163–169

    Article  CAS  PubMed  Google Scholar 

  231. Li MH, Underhill SM, Reed C, Phillips TJ, Amara SG, Ingram SL (2017) Amphetamine and Methamphetamine Increase NMDAR-GluN2B Synaptic Currents in Midbrain Dopamine Neurons. Neuropsychopharmacology 42:1539–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Palmer MJ, Taschenberger H, Hull C, Tremere L, von Gersdorff H (2003) Synaptic activation of presynaptic glutamate transporter currents in nerve terminals. J Neurosci 23:4831–4841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Mim C, Balani P, Rauen T, Grewer C (2005) The glutamate transporter subtypes EAAT4 and EAATs 1–3 transport glutamate with dramatically different kinetics and voltage dependence but share a common uptake mechanism. J Gen Physiol 126:571–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Fang H, Huang Y, Zuo Z (2006) Enhancement of substrate-gated Cl- currents via rat glutamate transporter EAAT4 by PMA. Am J Physiol Cell Physiol 290:C1334–C1340

    Article  CAS  PubMed  Google Scholar 

  235. Park HY, Kim JH, Zuo Z, Do SH (2008) Ethanol increases the activity of rat excitatory amino acid transporter type 4 expressed in Xenopus oocytes: role of protein kinase C and phosphatidylinositol 3-kinase. Alcohol Clin Exp Res 32:348–354

    Article  CAS  PubMed  Google Scholar 

  236. Brasnjo G, Otis TS (2001) Neuronal glutamate transporters control activation of postsynaptic metabotropic glutamate receptors and influence cerebellar long-term depression. Neuron 31:607–616

    Article  CAS  PubMed  Google Scholar 

  237. Otis TS, Brasnjo G, Dzubay JA, Pratap M (2004) Interactions between glutamate transporters and metabotropic glutamate receptors at excitatory synapses in the cerebellar cortex. Neurochem Int 45:537–544

    Article  CAS  PubMed  Google Scholar 

  238. Duan S, Anderson CM, Stein BA, Swanson RA (1999) Glutamate induces rapid upregulation of glutamate transport and cell-surface expression of GLAST. J Neurosci 19:10193–10200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Munir M, Correale DM, Robinson MB (2000) Substrate-induced up-regulation of Na+-dependent glutamate transport activity. Neurochem Int 37:147–162

    Article  CAS  PubMed  Google Scholar 

  240. González MI, Ortega A (2000) Regulation of high-affinity glutamate uptake activity in Bergmann glia cells by glutamate. Brain Res 866:73–81

    Article  PubMed  Google Scholar 

  241. Nakagawa T, Otsubo Y, Yatani Y, Shirakawa H, Kaneko S (2008) Mechanisms of substrate transport-induced clustering of a glial glutamate transporter GLT-1 in astroglial-neuronal cultures. Eur J Neurosci 28:1719–1730

    Article  PubMed  Google Scholar 

  242. Ibanez I, Diez-Guerra FJ, Gimenez C, Zafra F (2016) Activity dependent internalization of the glutamate transporter GLT-1 mediated by beta-arrestin 1 and ubiquitination. Neuropharmacology 107:376–386

    Article  CAS  PubMed  Google Scholar 

  243. Ibanez I, Bartolome-Martin D, Piniella D, Gimenez C, Zafra F (2019) Activity dependent internalization of the glutamate transporter GLT-1 requires calcium entry through the NCX sodium/calcium exchanger. Neurochem Int 123:125–132

    Article  CAS  PubMed  Google Scholar 

  244. Al Awabdh S, Gupta-Agarwal S, Sheehan DF, Muir J, Norkett R, Twelvetrees AE, Griffin LD, Kittler JT (2016) Neuronal activity mediated regulation of glutamate transporter GLT-1 surface diffusion in rat astrocytes in dissociated and slice cultures. Glia 64:1252–1264

    Article  PubMed  PubMed Central  Google Scholar 

  245. Wang Y, Yun BW, Kwon E, Hong JK, Yoon J, Loake GJ (2006) S-nitrosylation: an emerging redox-based post-translational modification in plants. J Exp Bot 57:1777–1784

    Article  CAS  PubMed  Google Scholar 

  246. Stamler JS, Lamas S, Fang FC (2001) Nitrosylation. the prototypic redox-based signaling mechanism. Cell 106:675–683

    Article  CAS  PubMed  Google Scholar 

  247. Foster MW, McMahon TJ, Stamler JS (2003) S-nitrosylation in health and disease. Trends Mol Med 9:160–168

    Article  CAS  PubMed  Google Scholar 

  248. Stomberski CT, Hess DT, Stamler JS (2019) Protein S-Nitrosylation: Determinants of Specificity and Enzymatic Regulation of S-Nitrosothiol-Based Signaling. Antioxid Redox Signal 30:1331–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Yin CY, Huang SY, Gao L, Lin YH, Chang L, Wu HY, Zhu DY, Luo CX (2021) Neuronal nitric oxide synthase in nucleus accumbens specifically mediates susceptibility to social defeat stress through cyclin-dependent kinase 5. J Neurosci

  250. McLeod F, Boyle K, Marzo A, Martin-Flores N, Moe TZ, Palomer E, Gibb AJ, Salinas PC (2020) Wnt Signaling Through Nitric Oxide Synthase Promotes the Formation of Multi-Innervated Spines. Front Synaptic Neurosci 12:575863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Lenz IJ, Plesnila N, Terpolilli NA (2020) Role of endothelial nitric oxide synthase for early brain injury after subarachnoid hemorrhage in mice. J Cereb Blood Flow Metab:271678 × 20973787

  252. Sun Y, Zhao Z, Zhang H, Li J, Chen J, Luan X, Min W, He Y (2020) The interaction of lead exposure and CCM3 defect plays an important role in regulating angiogenesis through eNOS/NO pathway. Environ Toxicol Pharmacol 79:103407

    Article  CAS  PubMed  Google Scholar 

  253. Zhou Q, Tu T, Tai S, Tang L, Yang H, Zhu Z (2021) Endothelial specific deletion of HMGB1 increases blood pressure and retards ischemia recovery through eNOS and ROS pathway in mice. Redox Biol 41:101890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Balderas A, Guillem AM, Martinez-Lozada Z, Hernandez-Kelly LC, Aguilera J, Ortega A (2014) GLAST/EAAT1 regulation in cultured Bergmann glia cells: role of the NO/cGMP signaling pathway. Neurochem Int 73:139–145

    Article  CAS  PubMed  Google Scholar 

  255. Raju K, Doulias PT, Evans P, Krizman EN, Jackson JG, Horyn O, Daikhin Y, Nissim I, Yudkoff M, Nissim I, Sharp KA, Robinson MB, Ischiropoulos H (2015) Regulation of brain glutamate metabolism by nitric oxide and S-nitrosylation. Sci Signal 8:ra68

    Article  PubMed  PubMed Central  Google Scholar 

  256. Greaves J, Chamberlain LH (2007) Palmitoylation-dependent protein sorting. J Cell Biol 176:249–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Greaves J, Prescott GR, Gorleku OA, Chamberlain LH (2009) The fat controller: roles of palmitoylation in intracellular protein trafficking and targeting to membrane microdomains (Review). Mol Membr Biol 26:67–79

    Article  CAS  PubMed  Google Scholar 

  258. Fukata Y, Fukata M (2010) Protein palmitoylation in neuronal development and synaptic plasticity. Nat Rev Neurosci 11:161–175

    Article  CAS  PubMed  Google Scholar 

  259. Fukata Y, Dimitrov A, Boncompain G, Vielemeyer O, Perez F, Fukata M (2013) Local palmitoylation cycles define activity-regulated postsynaptic subdomains. J Cell Biol 202:145–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Blaskovic S, Adibekian A, Blanc M, van der Goot GF (2014) Mechanistic effects of protein palmitoylation and the cellular consequences thereof. Chem Phys Lipids 180:44–52

    Article  CAS  PubMed  Google Scholar 

  261. Fukata M, Fukata Y, Adesnik H, Nicoll RA, Bredt DS (2004) Identification of PSD-95 palmitoylating enzymes. Neuron 44:987–996

    Article  CAS  PubMed  Google Scholar 

  262. Korycka J, Lach A, Heger E, Boguslawska DM, Wolny M, Toporkiewicz M, Augoff K, Korzeniewski J, Sikorski AF (2012) Human DHHC proteins: a spotlight on the hidden player of palmitoylation. Eur J Cell Biol 91:107–117

    Article  CAS  PubMed  Google Scholar 

  263. Cao Y, Qiu T, Kathayat RS, Azizi SA, Thorne AK, Ahn D, Fukata Y, Fukata M, Rice PA, Dickinson BC (2019) ABHD10 is an S-depalmitoylase affecting redox homeostasis through peroxiredoxin-5. Nat Chem Biol 15:1232–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Hirano T, Kishi M, Sugimoto H, Taguchi R, Obinata H, Ohshima N, Tatei K, Izumi T (2009) Thioesterase activity and subcellular localization of acylprotein thioesterase 1/lysophospholipase 1. Biochim Biophys Acta 1791:797–805

    Article  CAS  PubMed  Google Scholar 

  265. Lin DT, Conibear E (2015) ABHD17 proteins are novel protein depalmitoylases that regulate N-Ras palmitate turnover and subcellular localization. eLife 4:e11306

    Article  PubMed  PubMed Central  Google Scholar 

  266. Lin DT, Conibear E (2015) Enzymatic protein depalmitoylation by acyl protein thioesterases. Biochem Soc Trans 43:193–198

    Article  CAS  PubMed  Google Scholar 

  267. Kang R, Wan J, Arstikaitis P, Takahashi H, Huang K, Bailey AO, Thompson JX, Roth AF, Drisdel RC, Mastro R, Green WN, Yates JR 3rd, Davis NG, El-Husseini A (2008) Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation. Nature 456:904–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Huang K, Kang MH, Askew C, Kang R, Sanders SS, Wan J, Davis NG, Hayden MR (2010) Palmitoylation and function of glial glutamate transporter-1 is reduced in the YAC128 mouse model of Huntington disease. Neurobiol Dis 40:207–215

    Article  CAS  PubMed  Google Scholar 

  269. Fontana AC, Fox DP, Zoubroulis A, Mortensen OV, Raghupathi R (2016) Neuroprotective Effects of the Glutamate Transporter Activator (R)-(-)-5-methyl-1-nicotinoyl-2-pyrazoline (MS-153) following Traumatic Brain Injury in the Adult Rat. J Neurotrauma 33:1073–1083

    Article  PubMed  Google Scholar 

  270. Kortagere S, Mortensen OV, Xia J, Lester W, Fang Y, Srikanth Y, Salvino JM, Fontana ACK (2018) Identification of novel allosteric modulators of glutamate transporter EAAT2. ACS Chem Neurosci 9:522–534

    Article  CAS  PubMed  Google Scholar 

  271. Falcucci RM, Wertz R, Green JL, Meucci O, Salvino J, Fontana ACK (2019) Novel positive allosteric modulators of glutamate transport have neuroprotective properties in an in vitro excitotoxic model. ACS Chem Neurosci 10:3437–3453

    Article  CAS  PubMed  Google Scholar 

  272. Zhu BG, Chen YZ, Xing BR (1999) Effect of calcium on the uptake of glutamate by synaptosomes: possible involvement of two different mechanisms. J Neural Transm (Vienna) 106:257–264

    Article  CAS  Google Scholar 

  273. Chawla AR, Johnson DE, Zybura AS, Leeds BP, Nelson RM, Hudmon A (2017) Constitutive regulation of the glutamate/aspartate transporter EAAT1 by Calcium-Calmodulin-Dependent Protein Kinase II. J Neurochem 140:421–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Ashpole NM, Chawla AR, Martin MP, Brustovetsky T, Brustovetsky N, Hudmon A (2013) Loss of calcium/calmodulin-dependent protein kinase II activity in cortical astrocytes decreases glutamate uptake and induces neurotoxic release of ATP. J Biol Chem 288:14599–14611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Hughes EG, Maguire JL, McMinn MT, Scholz RE, Sutherland ML (2004) Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking. Brain Research Molecular Brain Research 124:114–123

    Article  CAS  PubMed  Google Scholar 

  276. Abousaab A, Lang F (2016) Up-Regulation of Excitatory Amino Acid Transporters EAAT3 and EAAT4 by Lithium Sensitive Glycogen Synthase Kinase GSK3ss. Cell Physiol Biochem 40:1252–1260

    Article  CAS  PubMed  Google Scholar 

  277. Jimenez E, Nunez E, Ibanez I, Draffin JE, Zafra F, Gimenez C (2014) Differential regulation of the glutamate transporters GLT-1 and GLAST by GSK3beta. Neurochem Int 79:33–43

    Article  CAS  PubMed  Google Scholar 

  278. Trotti D, Volterra A, Lehre KP, Rossi D, Gjesdal O, Racagni G, Danbolt NC (1995) Arachidonic acid inhibits a purified and reconsititued glutamate transporter directly from the water phase and not via the phospholipid membrane. J Biol Chem 270:9890–9895

    Article  CAS  PubMed  Google Scholar 

  279. Volterra A, Trotti D, Cassutti P, Tromba C, Salvaggio A, Melcangi RC, Racagi G (1992) High sensitivity of glutamate uptake to extracellular free arachidonic acid levels in rat cortical synaptosomes and astrocytes. J Neurochem 59:600–606

    Article  CAS  PubMed  Google Scholar 

  280. Volterra A, Trotti D, Racagni G (1994) Glutamate uptake is inhibited by arachidonic acid and oxygen radicals via two distinct and additive mechanisms. Mol Pharmacol 46:986–992

    CAS  PubMed  Google Scholar 

  281. Escartin C, Brouillet E, Gubellini P, Trioulier Y, Jacquard C, Smadja C, Knott GW, Kerkerian-Le Goff L, Deglon N, Hantraye P, Bonvento G (2006) Ciliary neurotrophic factor activates astrocytes, redistributes their glutamate transporters GLAST and GLT-1 to raft microdomains, and improves glutamate handling in vivo. J Neurosci 26:5978–5989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Raunser S, Haase W, Franke C, Eckert GP, Muller WE, Kuhlbrandt W (2006) Heterologously expressed GLT-1 associates in approximately 200-nm protein-lipid islands. Biophys J 91:3718–3726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Otto GP, Nichols BJ (2011) The roles of flotillin microdomains–endocytosis and beyond. J Cell Sci 124:3933–3940

    Article  CAS  PubMed  Google Scholar 

  284. Jang D, Kwon H, Jeong K, Lee J, Pak Y (2015) Essential role of flotillin-1 palmitoylation in the intracellular localization and signaling function of IGF-1 receptor. J Cell Sci 128:2179–2190

    Article  CAS  PubMed  Google Scholar 

  285. Piniella D, Martinez-Blanco E, Ibanez I, Bartolome-Martin D, Porlan E, Diez-Guerra J, Gimenez C, Zafra F (2018) Identification of novel regulatory partners of the glutamate transporter GLT-1. Glia 66:2737–2755

    Article  PubMed  Google Scholar 

  286. Robinson MB (1998) Examination of glutamate transporter heterogeneity using synaptosomal preprations. Methods Enzymol 296:189–202

    Article  CAS  PubMed  Google Scholar 

  287. Brigidi GS, Bamji SX (2013) Detection of protein palmitoylation in cultured hippocampal neurons by immunoprecipitation and acyl-biotin exchange (ABE). J Vis Exp

  288. Genda EN, Jackson JG, Sheldon AL, Locke SF, Greco TM, O’Donnell JC, Spruce LA, Xiao R, Guo W, Putt M, Seeholzer S, Ischiropoulos H, Robinson MB (2011) Co-compartmentalization of the astroglial glutamate transporter, GLT-1, with glycolytic enzymes and mitochondria. J Neurosci 31:18275–18288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Zila Martinez-Lozada for her thoughtful comments and suggestions for improving this review article. The authors were supported by a grant from the National Institutes of Neurologic Disease and Stroke (R01 NS106693).

Funding

The authors were supported by a Grant from the National Institutes of Neurologic Disease and Stroke (R01 NS106693).

Author information

Authors and Affiliations

Authors

Contributions

The idea for the topic of this review was developed by AMG and MBR. AMG and MBR gathered literature, and they each drafted parts of the manuscript. AMG, MBR, and ENK all planned the experiments described. AMG and ENK conducted the experiments and performed the data analyses. AMG, MBR, and ENK all contributed to editing and critical revision.

Corresponding author

Correspondence to Michael B. Robinson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

The work with rats was reviewed and approved by the Children’s Hospital of Philadelphia animal care and use committee and was conducted in accordance with NIH policy.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special issue: In Honor of Baruch Kanner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillem, A.M., Krizman, E.N. & Robinson, M.B. Rapid Regulation of Glutamate Transport: Where Do We Go from Here?. Neurochem Res 47, 61–84 (2022). https://doi.org/10.1007/s11064-021-03329-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03329-7

Keywords

Navigation