Skip to main content
Log in

Synaptic ERK2 Phosphorylates and Regulates Metabotropic Glutamate Receptor 1 In Vitro and in Neurons

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

A synaptic pool of extracellular signal-regulated kinases (ERK) controls synaptic transmission, although little is known about its underlying signaling mechanisms. Here, we found that synaptic ERK2 directly binds to postsynaptic metabotropic glutamate receptor 1a (mGluR1a). This binding is direct and the ERK-binding site is located in the intracellular C-terminus (CT) of mGluR1a. Parallel with this binding, ERK2 phosphorylates mGluR1a at a cluster of serine residues in the distal part of mGluR1a-CT. In rat cerebellar neurons, ERK2 interacts with mGluR1a at synaptic sites, and active ERK constitutively phosphorylates mGluR1a under normal conditions. This basal phosphorylation is critical for maintaining adequate surface expression of mGluR1a. ERK is also essential for controlling mGluR1a signaling in triggering distinct postreceptor signaling transduction pathways. In summary, we have demonstrated that mGluR1a is a sufficient substrate of ERK2. ERK that interacts with and phosphorylates mGluR1a is involved in the regulation of the trafficking and signaling of mGluR1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Traynelis SF, Wollmuth LP, McBain CJ, Menniti ES, Vance KM, Ogden KK, Hansen KB, Yuan H et al (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nicoletti F, Bockaert J, Collingridge GL, Conn PJ, Ferraguti F, Schoepp DD, Wroblewski JT, Pin JP (2011) Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology 60:1017–1041

    Article  CAS  PubMed  Google Scholar 

  4. Lujan R, Nusser Z, Roberts JD, Shigemoto R, Somogyi P (1996) Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur J Neurosci 8:1488–1500

    Article  CAS  PubMed  Google Scholar 

  5. Kuwajima M, Hall RA, Aiba A, Smith Y (2004) Subcellular and subsynaptic localization of group I metabotropic glutamate receptors in the monkey subthalamic nucleus. J Comp Neurol 474:589–602

    Article  CAS  PubMed  Google Scholar 

  6. Enz R (2012) Metabotropic glutamate receptors and interacting proteins: evolving drug targets. Curr Drug Targets 13:145–156

    Article  CAS  PubMed  Google Scholar 

  7. Fagni L (2012) Diversity of metabotropic glutamate receptor-interacting proteins and pathophysiological functions. Adv Exp Med Biol 970:63–79

    Article  CAS  PubMed  Google Scholar 

  8. Kim CH, Lee J, Lee JY, Roche KW (2008) Metabotropic glutamate receptors: phosphorylation and receptor signaling. J Neurosci Res 86:1–10

    Article  CAS  PubMed  Google Scholar 

  9. Mao LM, Guo ML, Jin DZ, Fibuch EE, Choe ES, Wang JQ (2011) Posttranslational modification biology of glutamate receptors and drug addiction. Front Neuroanat 5:19

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sweatt JD (2004) Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 14:311–317

    Article  CAS  PubMed  Google Scholar 

  11. Thomas GM, Huganir RL (2004) MAPK cascade signaling and synaptic plasticity. Nat Rev Neurosci 5:173–183

    Article  CAS  PubMed  Google Scholar 

  12. Wang JQ, Fibuch EE, Mao LM (2007) Regulation of mitogen-activated protein kinases by glutamate receptors. J Neurochem 100:1–11

    Article  CAS  PubMed  Google Scholar 

  13. Ortiz J, Harris HW, Guitart X, Terwilliger RZ, Haycock JW, Nestler EJ (1995) Extracellular signal-regulated protein kinases (ERKs) and ERK kinase (MEK) in brain: regional distribution and regulation by chronic morphine. J Neurosci 15:1285–1297

    CAS  PubMed  Google Scholar 

  14. Boggio EM, Putignano E, Sassoe-Pognetto M, Pizzorusso T, Glustetto M (2007) Visual stimulation activates ERK in synaptic and somatic compartments of rat cortical neurons with parallel kinetics. PLoS One 2:e604

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sindreu CB, Scheiner ZS, Storm DR (2007) Ca2+-stimulated adenylyl cyclases regulate ERK-dependent activation of MSK1 during fear conditioning. Neuron 53:79–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mao LM, Reusch JM, Fibuch EE, Liu Z, Wang JQ (2013) Amphetamine increases phosphorylation of MAPK/ERK at synaptic sites in the rat striatum and medial prefrontal cortex. Brain Res 1494:101–108

    Article  CAS  PubMed  Google Scholar 

  17. Suzuki T, Okumura-Noji K, Nishida E (1995) ERK2-type mitogen-activated protein kinase (MAPK) and its substrates in postsynaptic density fractions from the rat brain. Neurosci Res 22:277–285

    Article  CAS  PubMed  Google Scholar 

  18. Suzuki T, Mitake S, Murata S (1999) Presence of up-stream and downstream components of a mitogen-activated protein kinase pathway in the PSD of the rat forebrain. Brain Res 840:36–44

    Article  CAS  PubMed  Google Scholar 

  19. Mao LM, Wang JQ (2016) Synaptically localized mitogen-activated protein kinases: local substrates and regulation. Mol Neurobiol. doi:10.1007/s12035-015-9535-1

    Google Scholar 

  20. Liu XY, Mao LM, Zhang GC, Papasian CJ, Fibuch EE, Lan HX, Zhou HF, Xu M et al (2009) Activity-dependent modulation of limbic dopamine D3 receptors by CaMKII. Neuron 61:425–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guo ML, Fibuch EE, Liu XY, Choe ES, Buch S, Mao LM, Wang JQ (2010) CaMKIIα interacts with M4 muscarinic receptors to control receptor and psychomotor function. EMBO J 29:2070–2081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jin DZ, Guo ML, Xue B, Fibuch EE, Choe ES, Mao LM, Wang JQ (2013) Phosphorylation and feedback regulation of metabotropic glutamate receptor 1 by calcium/calmodulin-dependent protein kinase II. J Neurosci 33:3402–3412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gille H, Kortenjann M, Thomae O, Moomaw C, Slaughter C, Cobb MH, Shaw PE (1995) ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J 14:951–962

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cruzalegui FH, Cano E, Treisman R (1999) ERK activation induces phosphorylation of Elk-1 at multiple S/T-P motifs to high stoichiometry. Oncogene 18:7948–7957

    Article  CAS  PubMed  Google Scholar 

  25. Guo ML, Xue B, Jin DZ, Mao LM, Wang JQ (2012) Interactions and phosphorylation of postsynaptic density 93 (PSD-93) by extracellular signal-regulated kinase (ERK). Brain Res 1460:18–25

    Article  Google Scholar 

  26. Mao LM, Wang W, Chu XP, Zhang GC, Liu XY, Yang YJ, Haines M, Papasian CJ et al (2009) Stability of surface NMDA receptors controls synaptic and behavioral adaptations to amphetamine. Nat Neurosci 12:602–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tabatadze N, Huang G, May RM, Jain A, Woolley CS (2015) Sex differences in molecular signaling at inhibitory synapses in the hippocampus. J Neurosci 35:11252–11265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cansev M, Orhan F, Yaylagul EQ, Isik E, Turkyilmaz M, Aydin S, Gumus A, Sevinc C et al (2015) Evidence for the existence of pyrimidinergic transmission in rat brain. Neuropharmacology 91:77–86

    Article  CAS  PubMed  Google Scholar 

  29. Edbauer D, Cheng D, Batterton MN, Wang CF, Duong DM, Yaffe MB, Peng J, Shang M (2009) Identification and characterization of neuronal mitogen-activated protein kinase substrates using a specific phosphomotif antibody. Mol Cell Proteomics 8:681–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Orlando LR, Ayala R, Kett LR, Curley AA, Duffner J, Bragg DC, Tsai LH, Dunah AW et al (2009) Phosphorylation of the homer-binding domain of group I metabotropic glutamate receptors by cyclin-dependent kinase 5. J Neurochem 110:557–569

    Article  CAS  PubMed  Google Scholar 

  31. Songyang Z, Lu KP, Kwon YT, Tsai LH, Filhol O, Cochet C, Brickey DA, Soderling TR et al (1996) A structure basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1. Mol Cell Biol 16:6486–6493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martin LJ, Blackstone CD, Huganir RL, Price DL (1992) Cellular localization of a metabotropic glutamate receptor in rat brain. Neuron 9:259–270

    Article  CAS  PubMed  Google Scholar 

  33. Shigemoto R, Nomura S, Ohishi H, Sugihara H, Nakanishi S, Mizuno N (1993) Immunohistochemical localization of a metabotropic glutamate receptor, mGluR5, in the rat brain. Neurosci Lett 163:53–57

    Article  CAS  PubMed  Google Scholar 

  34. Fotuhi M, Sharp AH, Glatt CE, Hwang PM, von Krosigk M, Snyder SH, Dawson TM (1993) Differential localization of phosphoinositide-linked metabotropic glutamate receptor (mGluR1) and the inositol 1,4,5-trisphosphate receptor in rat brain. J Neurosci 13:2001–2012

    CAS  PubMed  Google Scholar 

  35. Romano C, Miller JK, Hyrc K, Dikranjan S, Mennerick S, Takeuchi Y, Goldberg MP, O’Malley KL (2001) Covalent and noncovalent interactions mediate metabotropic glutamate receptor mGluR5 dimerization. Mol Pharmacol 59:46–53

    CAS  PubMed  Google Scholar 

  36. Shaffer C, Guo ML, Fibuch EE, Mao LM, Wang JQ (2010) Regulation of group I metabotropic glutamate receptor expression in the rat striatum and prefrontal cortex in response to amphetamine in vivo. Brain Res 1326:184–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Casar B, Arozarena I, Sanz-Moreno V, Pinto A, Agudo-Ibanez L, Marais R, Lewis RE, Berciano MT et al (2009) Ras subcellular localization defines extracellular signal-regulated kinase 1 and 2 substrate specificity through distinct utilization of scaffold proteins. Mol Cell Biol 29:1338–1353

    Article  CAS  PubMed  Google Scholar 

  38. Ubersax JA, Jr Ferrell JE (2007) Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 8:530–541

    Article  CAS  PubMed  Google Scholar 

  39. Sharrocks AD, Yang SH, Galanis A (2000) Docking domains and substrate-specificity determinations for MAP kinases. Trends Biochem Sci 25:448–453

    Article  CAS  PubMed  Google Scholar 

  40. Tanoue T, Adachi M, Moriguchi T, Nishida E (2000) A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat Cell Biol 2:110–116

    Article  CAS  PubMed  Google Scholar 

  41. Aarts M, Liu Y, Liu L, Besshoh S, Arundine M, Gurd JW, Wang YT, Salter MW et al (2002) Treatment of ischemic brain damage by perturbing NMDA receptor-PSD-95 protein interactions. Science 298:846–850

    Article  CAS  PubMed  Google Scholar 

  42. Heuss C, Scanziani M, Gahwiler BH, Gerber U (1999) G-protein-independent signaling mediated by metabotropic glutamate receptors. Nat Neurosci 2:1070–1077

    Article  CAS  PubMed  Google Scholar 

  43. Kalia LV, Gingrich JR, Salter MW (2004) Src in synaptic transmission and plasticity. Oncogene 23:8007–8016

    Article  CAS  PubMed  Google Scholar 

  44. Benquet P, Gee CE, Gerber U (2002) Two distinct signaling pathways upregulate NMDA receptor responses via two distinct metabotropic glutamate receptor subtypes. J Neurosci 22:9679–9686

    CAS  PubMed  Google Scholar 

  45. Guo W, Wei F, Zou S, Robbins MT, Sugiyo S, Ikeda T, Tu JC, Worley PF et al (2004) Group I metabotropic glutamate receptor NMDA receptor coupling and signaling cascade mediate spinal dorsal horn NMDA receptor 2B tyrosine phosphorylation associated with inflammatory hyperalgesia. J Neurosci 24:9161–9173

    Article  CAS  PubMed  Google Scholar 

  46. Sarantis K, Tsiamaki E, Kouvaros S, Papatheodoropoulos C, Angenatou F (2015) Adenosine A2A receptors permit mGluR5-evoked tyrosine phosphorylation of NR2B (Tyr1472) in rat hippocampus: a possible key mechanism in NMDA receptor modulation. J Neurochem 135:714–726

    Article  CAS  PubMed  Google Scholar 

  47. Heidinger V, Manzerra P, Wang XQ, Strasser U, Yu SP, Choi DW, Behrens MM (2002) Metabotropic glutamate receptor 1-induced upregulation of NMDA receptor current: mediation through the Pyk2/Src-family kinase pathway in cortical neurons. J Neurosci 22:5452–5461

    CAS  PubMed  Google Scholar 

  48. Takagi N, Besshoh S, Marunouchi T, Takeo S, Tanonaka K (2012) Metabotropic glutamate receptor 5 activation enhances tyrosine phosphorylation of the N-methyl-D-aspartate (NMDA) receptor and NMDA-induced cell death in hippocampal cultured neurons. Biol Pharm Bull 35:2224–2229

    Article  CAS  PubMed  Google Scholar 

  49. Roskoski R Jr (2005) Src kinase regulation by phosphorylation and dephosphorylation. Biochem Biophys Res Commun 331:1–14

    Article  CAS  PubMed  Google Scholar 

  50. Okada M (2012) Regulation of the Src family kinase by Csk. Int J Biol Sci 8:1385–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang SH, Yates PR, Whitmarsh AJ, Davis RJ, Sharrocks AD (1998) The Elk-1 ETS-domain transcription factor contains a mitogen-activated protein kinase targeting motif. Mol Cell Biol 18:710–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu B, Wilsbacher JL, Collisson T, Cobb MH (1999) The N-terminal ERK-binding site of MEK1 is required for efficient feedback phosphorylation by ERK2 in vitro and ERK activation in vivo. J Biol Chem 274:34029–34035

    Article  CAS  PubMed  Google Scholar 

  53. Pin JP, Waeber C, Prezeau L, Bockaert J, Heinemann SF (1992) Alternative splicing generates metabotropic glutamate receptor inducing different patterns of calcium release in Xenopus oocytes. Proc Natl Acad Sci U S A 89:10331–10335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Debata PR, Ranasinghe B, Berliner A, Curcio GM, Tantry SJ, Ponimaskin E, Banerjee P (2010) Erk1/2-dependent phosphorylation of PKCalpha at threonine 638 in hippocampal 5-HT(1A) receptor-mediated signaling. Biochem Biophys Res Commun 397:401–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Adams JP, Anderson AE, Varga AW, Dineley KT, Cook RG, Pfaffinger PJ, Sweatt JD (2000) The A-type potassium channel Kv4.2 is a substrate for the mitogen-activated protein kinase ERK. J Neurochem 75:2277–2287

    Article  CAS  PubMed  Google Scholar 

  56. Schrader LA, Bimbaum SG, Nadin BM, Ren Y, Bui D, Anderson AE, Sweatt JD (2006) ERK/MAPK regulates the Kv4.2 potassium channel by direct phosphorylation of the pore-forming subunit. Am J Physiol Cell Physiol 290:C852–C861

    Article  CAS  PubMed  Google Scholar 

  57. Jovanovic JN, Benfenati F, Siow YL, Sihra TS, Sanghera JS, Pelech SL, Greengard P, Czernik AJ (1996) Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I-actin interactions. Proc Natl Acad Sci U S A 93:3679–3683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sabio G, Reuver S, Feijoo C, Hasegawa M, Thomas GM, Centeno F, Kuhlendahl F, Leal-Ortiz S et al Stress- and mitogen-induced phosphorylation of the synapse-associated protein SAP90/PSD-95 by activation of SAPK3/p38gamma and ERK1/ERK2. Biochem J 380:19–30

  59. Treisman R (1996) Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol 8:205–215

    Article  CAS  PubMed  Google Scholar 

  60. Kosako H, Yamaguchi N, Aranami C, Ushiyama M, Kose S, Imamoto N, Taniguchi H, Nishida E et al (2009) Phosphoproteomics reveals new ERK MAP kinase targets and links ERK to nucleoporin-mediated nuclear transport. Nat Struct Mol Biol 16:1026–1035

    Article  CAS  PubMed  Google Scholar 

  61. Dhami GK, Ferguson SS (2006) Regulation of metabotropic glutamate receptor signaling, desensitization and endocytosis. Pharmacol Ther 111:260–271

    Article  CAS  PubMed  Google Scholar 

  62. Mao LM, Liu XY, Zhang GC, Chu XP, Fibuch EE, Wang LS, Liu Z, Wang JQ (2008) Phosphorylation of group I metabotropic glutamate receptors (mGluR1/5) in vitro and in vivo. Neuropharmacology 55:403–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Manzoni OJ, Finiels-Marlier F, Sassetti L, Blockaert J, le Peuch C, Sladeczek FA (1990) The glutamate receptor of the Qp-type activates protein kinase C and is regulated by protein kinase C. Neurosci Lett 109:146–151

    Article  CAS  PubMed  Google Scholar 

  64. Catania MV, Aronica E, Sortino MA, Canonico PL, Nicoletti F (1991) Desensitization of metabotropic glutamate receptors in neuronal cultures. J Neurochem 56:1329–1335

    Article  CAS  PubMed  Google Scholar 

  65. Thomsen C, Mulvihill ER, Haldeman D, Pickering DS, Hampson DR, Suzdak PD (1993) A pharmacological characterization of the mGluR1α subtype of the metabotropic glutamate receptor expressed in a cloned baby hamster kidney cell line. Brain Res 619:22–28

    Article  CAS  PubMed  Google Scholar 

  66. Alaluf S, Mulvihill ER, McIlhinney RA (1995) Rapid agonist mediated phosphorylation of the metabotropic glutamate receptor 1-alpha by protein kinase C in permanently transfected BHK cells. FEBS Letter 367:301–305

    Article  CAS  Google Scholar 

  67. Medler KF, Bruch RC (1999) Protein kinase Cβ and δ selectively phosphorylate odorant and metabotropic glutamate receptors. Chem Senses 24:295–299

    Article  CAS  PubMed  Google Scholar 

  68. Francesconi A, Duvoisin RM (2000) Opposing effects of protein kinase C and protein kinase a on metabotropic glutamate receptor signaling: selective desensitization of the inositol triphosphate/Ca2+ pathway by phosphorylation of the receptor-G protein-coupling domain. Proc Natl Acad Sci U S A 97:6185–6190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hu JH, Yang L, Kammermeier PJ, Moore CG, Brakeman PR, Tu J, Yu S, Petralia RS et al (2012) Preso1 dynamically regulates group I metabotropic glutamate receptors. Nat Neurosci 15:836–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Park JM, Hu JH, Milshteyn A, Zhang PW, Moore CG, Park S, Datko MC, Domingo RD et al (2013) A prolyl-isomerase mediates dopamine-dependent plasticity and cocaine motor sensitization. Cell 154:637–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Minglei Guo and Bing Xue for technical assistance. This work was supported by NIH grants DA10355 (J.Q.W.) and MH61469 (J.Q.W.), the NRF grants 2013R1A2A2A04016044 (E.S.C.) and 2015R1A5A7037508 (E.S.C.), and the MFDS 14182MFDS977 (E.S.C.), South Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eun Sang Choe or John Q. Wang.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Ju Hwan Yang and Li-Min Mao equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J.H., Mao, LM., Choe, E.S. et al. Synaptic ERK2 Phosphorylates and Regulates Metabotropic Glutamate Receptor 1 In Vitro and in Neurons. Mol Neurobiol 54, 7156–7170 (2017). https://doi.org/10.1007/s12035-016-0225-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0225-4

Keywords

Navigation