Skip to main content

Advertisement

Log in

Induction of KLF4 Contributes to the Neurotoxicity of MPP + in M17 Cells: A New Implication in Parkinson’s Disease

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Parkinson's disease (PD) is the second most common neurodegenerative disease in humans. The effect of Krüppel-like factor (KLF) 4 in PD is unknown. In this study, KLF4 was found to be increased in both a time-dependent manner and a dose-dependent manner in response to the incubation with 1-methyl-4-phenylpyridinium (MPP+) in human dopamine neuroblastoma M17 cells, suggesting a potential role in MPP + −induced neurotoxicity. Following experiments showed that overexpression of KLF4 in M17 cells promoted MPP + −induced oxidative stress, embodied by exacerbated reactive oxygen species, 4-hydroxy-2-nonenal, and protein carbonyls. Furthermore, overexpression of KLF4 slowed cell proliferation and promoted lactate dehydrogenase release. Conversely, inhibition of KLF4 in M17 cells attenuated MPP + −induced neurotoxicity. The expression of superoxide dismutase (SOD) 1 in both mRNA and protein levels was found to be decreased by overexpressing KLF4, while increased by knockdown of KLF4. Moreover, promoter luciferase experiments showed that transcriptional activity on SOD1 was inhibited by KLF4. All the results indicated that KLF4 promoted the neurotoxicity of MPP + via inhibiting the transcription of SOD1, suggesting a potential mechanism of increased oxidative stress and cell death in Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barc S, Page G, Barrier L, Piriou A, Fauconneau B (2001) Impairment of the neuronal dopamine transporter activity in MPP + −treated rat was not prevented by treatments with nitric oxide synthase or poly (ADP-ribose) polymerase inhibitors. Neurosci Lett 314:82–86

    Article  PubMed  CAS  Google Scholar 

  • Bieker JJ (2001) Kruppel-like factors: three fingers in many pies. J Biol Chem 276:34355–34358

    Article  PubMed  CAS  Google Scholar 

  • Chen ZY, Shie J, Tseng C (2000) Up-regulation of gut-enriched Krüppel-like factor by interferon-gamma in human colon carcinoma cells. FEBS Lett 477:67–72

    Article  PubMed  CAS  Google Scholar 

  • Cookson MR (2009) Alpha-synuclein and neuronal cell death. Mol Neurodegener 4:9

    Article  PubMed  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson's disease: mechanisms and models. Neuron 39:889–909

    Article  PubMed  CAS  Google Scholar 

  • Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302:819–822

    Article  PubMed  CAS  Google Scholar 

  • Dekker RJ, van Thienen JV, Rohlena J et al (2005) Endothelial KLF2 links local arterial shear stress levels to the expression of vascular tone-regulating genes. Am J Pathol 167(2):609–618

    Article  PubMed  CAS  Google Scholar 

  • Ghaleb AM, Nandan MO, Chanchevalap S, Dalton WB, Hisamuddin IM, Yang VW (2005) Kruppel-like factors 4 and 5: the yin and yang regulators of cellular proliferation. Cell Res 15(2):92–96

    Article  PubMed  CAS  Google Scholar 

  • Goedert M, Spillantini MG, Del Tredici K, Braak H (2012) 100 years of Lewy pathology. Nat Rev Neurol 10:242

    Google Scholar 

  • He Y, Zhou H, Tang H, Luo Y (2006) Deficiency of disulfide bonds facilitating fibrillogenesis of endostatin. J Biol Chem 281(2):1048–1057

    Article  PubMed  CAS  Google Scholar 

  • Kaushik DK, Mukhopadhyay R, Kumawat KL, Gupta M, Basu A (2012) Therapeutic targeting of Krüppel-like factor 4 abrogates microglial activation. J Neuroinflammation 9:57

    Article  PubMed  CAS  Google Scholar 

  • Kitao Y, Matsuyama T, Takano K et al (2007) Does ORP150/HSP12A protect dopaminergic neurons against MPTP/MPP(+)-induced neurotoxicity? Antioxid Redox Signal 9:589–595

    Article  PubMed  CAS  Google Scholar 

  • Li QL, Ito K, Sakakura C et al (2002) Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109:113–124

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Zhao J, Li Q et al (2010) KLF4 promotes hydrogen-peroxide-induced apoptosis of chronic myeloid leukemia cells involving the bcl-2/bax pathway. Cell Stress Chaperones 15(6):905–912

    Article  PubMed  CAS  Google Scholar 

  • Liu MD, Liu Y, Liu JW, Zhang HL, Xiao XZ (2007) Effect of Kruppel-like factor 4 overexpression on heat stress-induced apoptosis of Raw264.7 macrophages. Zhong Nan Da Xue Xue Bao Yi Xue Ban 32:1002–1006

    PubMed  CAS  Google Scholar 

  • Lo YC, Shih YT, Tseng YT, Hsu HT (2012) Neuroprotective effects of San-Huang-Xie-Xin-Tang in the MPP(+)/MPTP models of Parkinson's disease in vitro and in vivo. Evid Based Complement Alternat Med 2012:501032

    PubMed  Google Scholar 

  • Marco B, Elisa G, Dragan M et al (2010) Alpha-synuclein overexpression increases dopamine toxicity in BE2-M17 cells. BMC Neurosci 11:41

    Article  Google Scholar 

  • Minc E, de Coppet P, Masson P et al (1999) The human copper-zinc superoxide dismutase gene (SOD1) proximal promoter is regulated by Sp1, Egr-1, and WT1 via non-canonical binding sites. J Biol Chem 274(1):503–509

    Article  PubMed  CAS  Google Scholar 

  • Moore DL, Blackmore MG, Hu Y et al (2009) KLF family members regulate intrinsic axon regeneration ability. Science 326:298–301

    Article  PubMed  CAS  Google Scholar 

  • Niemann HH, Jäger V, Butler PJ et al (2007) Structure of the human receptor tyrosine kinase Met in complex with the Listeria invasion protein lnlB. Cell 130(2):235–246

    Google Scholar 

  • Obata T (2006) Nitric oxide and MPP + −induced hydroxyl radical generation. J Neural Transm 113(9):1131–1144

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi S, Ohnami S, Laub F et al (2003) Downregulation and growth inhibitory effect of epithelial-type Kruppel-like transcription factor KLF4, but not KLF5, in bladder cancer. Biochem Biophys Res Commun 308(2):251–256

    Article  PubMed  CAS  Google Scholar 

  • Rowland BD, Bernards R, Peeper DS (2005) The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol 7:1074–1082

    Article  PubMed  CAS  Google Scholar 

  • Sheng B, Gong K, Niu Y et al (2009a) Inhibition of gamma-secretase activity reduces Abeta production, reduces oxidative stress, increases mitochondrial activity and leads to reduced vulnerability to apoptosis: implications for the treatment of Alzheimer's disease. Free Radic Biol Med 46(10):1362–1375

    Article  PubMed  CAS  Google Scholar 

  • Sheng B, Song B, Zheng Z et al (2009b) Abnormal cleavage of APP impairs its functions in cell adhesion and migration. Neurosci Lett 450(3):327–331

    Article  PubMed  CAS  Google Scholar 

  • Sheng B, Wang X, Su B et al (2012) Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer's disease. J Neurochem 120(3):419–429

    Article  PubMed  CAS  Google Scholar 

  • Shie JL, Chen ZY, Fu M, Pestell RG, Tseng CC (2000) Gut-enriched Krüppel-like factor represses cyclin D1 promoter activity through Sp1 motif. Nucleic Acids Res 28:2969–2976

    Article  PubMed  CAS  Google Scholar 

  • Shields JM, Christy RJ, Yang VW (1996) Identification and characterization of a gene encoding a gut-enriched Kruppel-like factor expressed during growth arrest. J Biol Chem 271:20009–200017

    Article  PubMed  CAS  Google Scholar 

  • Wassmann S, Wassmann K, Jung A et al (2007) Induction of p53 by GKLF is essential for inhibition of proliferation of vascular smooth muscle cells. J Mol Cell Cardiol 43:301–307

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Lingrel JB (2004) KLF2 inhibits Jurkat T leukemia cell growth via upregulation of cyclin-dependent kinase inhibitor p21WAF1/CIP1. Oncogene 23:8088–8096

    Article  PubMed  CAS  Google Scholar 

  • Xi J, Zhang B, Luo F, Liu J, Yang T (2012) Quercetin protects neuroblastoma SH-SY5Y cells against oxidative stress by inhibiting expression of Krüppel-like factor 4. Neurosci Lett 527(2):115–120

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuezhen Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Wang, X., Yi, X. et al. Induction of KLF4 Contributes to the Neurotoxicity of MPP + in M17 Cells: A New Implication in Parkinson’s Disease. J Mol Neurosci 51, 109–117 (2013). https://doi.org/10.1007/s12031-013-9961-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-9961-3

Keywords

Navigation