Skip to main content
Log in

Sexually Dimorphic Response of TRPM2 Inhibition Following Cardiac Arrest-Induced Global Cerebral Ischemia in Mice

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Transient global cerebral ischemia due to cardiac arrest followed by resuscitation (CA/CPR) causes significant neurological damage in vulnerable neuron populations within the brain, such as hippocampal CA1 neurons. In recent years, we have implicated the transient receptor potential M2 (TRPM2) channel as a mediator of ischemic injury to neurons. We previously demonstrated that genetic and pharmacological strategies that reduce TRPM2 function preferentially protect male neurons in vitro and reduce infarct volume following experimental stroke. Due to the narrow therapeutic window for intervention following ischemic stroke, it is important to assess the role of TRPM2 in other models of cerebral ischemia. Therefore, this study utilized a modified mouse model of CA/CPR to mimic more accurately the clinical condition by maintaining body and head temperatures near the physiological range throughout. Here, we report that inhibition of TRPM2 activity with clotrimazole reduces hippocampal CA1 neuronal injury when administered 30 min after resuscitation from cardiac arrest. Consistent with our previous observations, neuroprotection was observed in male mice and no effect on injury was observed in the female. These findings provide further evidence for TRPM2 as a target for protection against cerebral ischemia in the male brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Aarts MM, Tymianski M (2005) TRPMs and neuronal cell death. Pflugers Arch 451(1):243–249

    Article  PubMed  CAS  Google Scholar 

  • Allen BS, Buckberg GD (2012) Studies of isolated global brain ischaemia: I. Overview of irreversible brain injury and evolution of a new concept-redefining the time of brain death. Eur J Cardiothorac Surg 41(5):1132–1137

    Article  PubMed  Google Scholar 

  • Allen D, Nakayama S et al (2011) SK2 channels are neuroprotective for ischemia-induced neuronal cell death. J Cereb Blood Flow Metab 31(12):2302–2312

    Article  PubMed  CAS  Google Scholar 

  • Blenn C, Wyrsch P et al (2011) Poly(ADP-ribose)glycohydrolase is an upstream regulator of Ca2+ fluxes in oxidative cell death. Cell Mol Life Sci 68(8):1455–1466

    Article  PubMed  CAS  Google Scholar 

  • Canal Castro C, Pagnussat AS et al (2012) Coumestrol has neuroprotective effects before and after global cerebral ischemia in female rats. Brain Res 1474:82–90

    Article  PubMed  CAS  Google Scholar 

  • Fearon IM, Ball SG et al (2000) Clotrimazole inhibits the recombinant human cardiac l-type Ca2+ channel alpha 1C subunit. Br J Pharmacol 129(3):547–554

    Article  PubMed  CAS  Google Scholar 

  • Fonfria E, Marshall ICB et al (2004) TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br J Pharmacol 143(1):186–192

    Article  PubMed  CAS  Google Scholar 

  • Garcia JH (1988) Morphology of global cerebral ischemia. Crit Care Med 16(10):979–987

    Article  PubMed  CAS  Google Scholar 

  • Garcia JH, Anderson ML (1989) Physiopathology of cerebral ischemia. Crit Rev Neurobiol 4(4):303–324

    PubMed  CAS  Google Scholar 

  • Ginsberg MD (2008) Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology 55(3):363–389

    Article  PubMed  CAS  Google Scholar 

  • Grubisha O, Rafty LA et al (2006) Metabolite of SIR2 reaction modulates TRPM2 ion channel. J Biol Chem 281(20):14057–14065

    Article  PubMed  CAS  Google Scholar 

  • Harteneck C (2005) Function and pharmacology of TRPM cation channels. Naunyn Schmiedebergs Arch Pharmacol 371(4):307–314

    Article  PubMed  CAS  Google Scholar 

  • Harting K, Knöll B (2010) SIRT2-mediated protein deacetylation: an emerging key regulator in brain physiology and pathology. Eur J Cell Biol 89(2–3):262–269

    Article  PubMed  CAS  Google Scholar 

  • Herson PS, Koerner IP et al (2009) Sex, sex steroids, and brain injury. Semin Reprod Med 27(3):229–239

    Article  PubMed  CAS  Google Scholar 

  • Inamura K, Sano Y et al (2003) Response to ADP-ribose by activation of TRPM2 in the CRI-G1 insulinoma cell line. J Membr Biol 191(3):201–207

    Article  PubMed  CAS  Google Scholar 

  • Jager H, Dreker T et al (2004) Blockage of intermediate-conductance Ca2+-activated K+ channels inhibit human pancreatic cancer cell growth in vitro. Mol Pharmacol 65(3):630–638

    Article  PubMed  Google Scholar 

  • Jensen BL, Gambaryan S et al (1998) KATP channels are not essential for pressure-dependent control of renin secretion. Pflugers Arch 435(5):670–677

    Article  PubMed  CAS  Google Scholar 

  • Jia J, Verma S et al (2011) Sex differences in neuroprotection provided by inhibition of TRPM2 channels following experimental stroke. J Cereb Blood Flow Metab 31(11):2160–2168

    Article  PubMed  CAS  Google Scholar 

  • Jiang L-H, Yang W et al (2010) TRPM2 channel properties, functions and therapeutic potentials. Expert Opin Ther Targets 14(9):973–988

    Article  PubMed  CAS  Google Scholar 

  • Kelley MH, Kuroiwa M et al (2011) Sex difference in sensitivity to allopregnanolone neuroprotection in mice correlates with effect on spontaneous inhibitory post synaptic currents. Neuropharmacology 61(4):724–729

    Article  PubMed  CAS  Google Scholar 

  • Kim C, Fahrenbruch CE et al (2001) Out-of-hospital cardiac arrest in men and women. Circulation 104(22):2699–2703

    Article  PubMed  CAS  Google Scholar 

  • Kofler J, Hattori K et al (2004) Histopathological and behavioral characterization of a novel model of cardiac arrest and cardiopulmonary resuscitation in mice. J Neurosci Methods 136(1):33–44

    Article  PubMed  Google Scholar 

  • Kolisek M, Beck A et al (2005) Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels. Mol Cell 18(1):61–69

    Article  PubMed  CAS  Google Scholar 

  • Kostandy BB (2012) The role of glutamate in neuronal ischemic injury: the role of spark in fire. Neurol Sci 33(2):223–237

    Article  PubMed  Google Scholar 

  • Kraft R, Grimm C et al (2004) Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia. Am J Physiol Cell Physiol 286(1):C129–C137

    Article  PubMed  CAS  Google Scholar 

  • Kühn FJP, Heiner I et al (2005) TRPM2: a calcium influx pathway regulated by oxidative stress and the novel second messenger ADP-ribose. Pflugers Arch 451(1):212–219

    Article  PubMed  Google Scholar 

  • Kühn FJP, Lückhoff A (2004) Sites of the NUDT9-H domain critical for ADP-ribose activation of the cation channel TRPM2. J Biol Chem 279(45):46431–46437

    Article  PubMed  Google Scholar 

  • Lang JT, McCullough LD (2008) Pathways to ischemic neuronal cell death: are sex differences relevant? J Transl Med 6:33

    Article  PubMed  Google Scholar 

  • Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 460(2):525–542

    Article  PubMed  CAS  Google Scholar 

  • Lebesgue D, Chevaleyre V et al (2009) Estradiol rescues neurons from global ischemia-induced cell death: multiple cellular pathways of neuroprotection. Steroids 74(7):555–561

    Article  PubMed  CAS  Google Scholar 

  • Lim C, Alexander MP et al (2004) The neurological and cognitive sequelae of cardiac arrest. Neurology 63(10):1774–1778

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Arun A et al (2012) Sirtuin 2 (SIRT2) enhances 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal damage via deacetylating forkhead box O3a (Foxo3a) and activating Bim protein. J Biol Chem 287(39):32307–32311

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Chen H et al (2012) NAD+ metabolism and NAD(+)-dependent enzymes: promising therapeutic targets for neurological diseases. Curr Drug Targets 13(2):222–229

    Article  PubMed  CAS  Google Scholar 

  • Madl C, Holzer M (2004) Brain function after resuscitation from cardiac arrest. Curr Opin Crit Care 10(3):213–217

    Article  PubMed  Google Scholar 

  • McHugh D, Flemming R et al (2003) Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. J Biol Chem 278(13):11002–11006

    Article  PubMed  CAS  Google Scholar 

  • McNulty S, Fonfria E (2005) The role of TRPM channels in cell death. Pflugers Arch 451(1):235–242

    Article  PubMed  CAS  Google Scholar 

  • Miller BA (2006) The role of TRP channels in oxidative stress-induced cell death. J Membr Biol 209(1):31–41

    Article  PubMed  CAS  Google Scholar 

  • Miller BA, Zhang W (2011) TRP channels as mediators of oxidative stress. Adv Exp Med Biol 704:531–544

    Article  PubMed  CAS  Google Scholar 

  • Nakano T, Hurn PD et al (2010) Testosterone exacerbates neuronal damage following cardiac arrest and cardiopulmonary resuscitation in mouse. Brain Res 1357:124–130

    Article  PubMed  CAS  Google Scholar 

  • Olah ME, Jackson MF et al (2009) Ca2+-dependent induction of TRPM2 currents in hippocampal neurons. J Physiol (Lond) 587(Pt 5):965–979

    Article  CAS  Google Scholar 

  • Perraud A-L, Takanishi CL et al (2005) Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. J Biol Chem 280(7):6138–6148

    Article  PubMed  CAS  Google Scholar 

  • Riedel G, Platt B et al (2003) Glutamate receptor function in learning and memory. Behav Brain Res 140(1–2):1–47

    Article  PubMed  CAS  Google Scholar 

  • Roger VL, Go AS et al (2011) Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation 123(4):e18–e209

    Article  PubMed  Google Scholar 

  • Roine RO, Kajaste S et al (1993) Neuropsychological sequelae of cardiac arrest. JAMA 269(2):237–242

    Article  PubMed  CAS  Google Scholar 

  • Rosamond W, Flegal K et al (2008) Heart disease and stroke statistics—2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117(4):e25–e146

    Article  PubMed  Google Scholar 

  • Saito A, Maier CM et al (2005) Oxidative stress and neuronal death/survival signaling in cerebral ischemia. Mol Neurobiol 31(1–3):105–116

    Article  PubMed  CAS  Google Scholar 

  • Sauve AA, Youn DY (2012) Sirtuins: NAD(+)-dependent deacetylase mechanism and regulation. Curr Opin Chem Biol 16(5–6):535–543

    Article  PubMed  CAS  Google Scholar 

  • Saxon LA (2005) Sudden cardiac death: epidemiology and temporal trends. Rev Cardiovasc Med 6(2):S12–S20

    PubMed  Google Scholar 

  • Starkus J, Beck A et al (2007) Regulation of TRPM2 by extra-and intracellular calcium. J Gen Physiol 130(4):427–440

    Article  PubMed  CAS  Google Scholar 

  • Sugawara T, Fujimura M et al (2004) Neuronal death/survival signaling pathways in cerebral ischemia. NeuroRx 1(1):17–25

    Article  PubMed  Google Scholar 

  • Sumoza-Toledo A, Penner R (2011) TRPM2: a multifunctional ion channel for calcium signalling. J Physiol (Lond) 589(7):1515–1525

    Article  CAS  Google Scholar 

  • Szydlowska K, Tymianski M (2010) Calcium, ischemia and excitotoxicity. Cell Calcium 47(2):122–129

    Article  PubMed  CAS  Google Scholar 

  • Takahashi N, Kozai D et al (2011) Roles of TRPM2 in oxidative stress. Cell Calcium 50(3):279–287

    Article  PubMed  CAS  Google Scholar 

  • Thomas GP, Karmazyn M et al (1999) The antifungal antibiotic clotrimazole potently inhibits l-type calcium current in guinea-pig ventricular myocytes. Br J Pharmacol 126(7):1531–1533

    Article  PubMed  CAS  Google Scholar 

  • Tong L, Denu JM (2010) Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose. Biochim Biophys Acta 1804(8):1617–1625

    Article  PubMed  CAS  Google Scholar 

  • Vagnerova K, Liu K et al (2010) Poly (ADP-ribose) polymerase-1 initiated neuronal cell death pathway—do androgens matter? Neuroscience 166(2):476–481

    Article  PubMed  CAS  Google Scholar 

  • Van Den Eeden SK, Tanner CM et al (2003) Incidence of Parkinson’s disease: variation by age, gender, and race/ethnicity. Am J Epidemiol 157(11):1015–1022

    Article  Google Scholar 

  • Verma S, Quillinan N et al (2012) TRPM2 channel activation following in vitro ischemia contributes to male hippocampal cell death. Neurosci Lett 530(1):41–46

    Article  PubMed  CAS  Google Scholar 

  • Vukmir RB (2003) Prehospital cardiac arrest and the adverse effect of male gender, but not age, on outcome. J Womens Health (Larchmt) 12(7):667–673

    Article  Google Scholar 

  • Wigginton JG, Pepe PE et al (2002) Sex-related differences in the presentation and outcome of out-of-hospital cardiopulmonary arrest: a multiyear, prospective, population-based study. Crit Care Med 30(4 Suppl):S131–S136

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work supported in part by R01NS058792 and the Walter S. and Lucienne Driskill Foundation Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Herson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakayama, S., Vest, R., Traystman, R.J. et al. Sexually Dimorphic Response of TRPM2 Inhibition Following Cardiac Arrest-Induced Global Cerebral Ischemia in Mice. J Mol Neurosci 51, 92–98 (2013). https://doi.org/10.1007/s12031-013-0005-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0005-9

Keywords

Navigation