Skip to main content
Log in

TRPM2: a calcium influx pathway regulated by oxidative stress and the novel second messenger ADP-ribose

  • Invited Review
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

A unique functional property within the transient receptor potential (TRP) family of cation channels is the gating of TRP (melastatin) 2 (TRPM2) channels by ADP-ribose (ADPR). ADPR binds to the intracellular C-terminal tail of TRPM2, a domain that shows homology to enzymes with pyrophosphatase activity. Cytosolic Ca2+ enhances TRPM2 gating by ADPR; ADPR and Ca2+ in concert may be an important messenger system mediating Ca2+ influx. Other stimuli of TRPM2 include NAD and H2O2 and cyclic ADPR, which may act synergistically with ADPR. H2O2, an experimental paradigm of oxidative stress, may also induce the formation of ADPR in the nucleus or mitochondria. In this review, we summarize the gating properties of TRPM2 and the proposed pathways of channel activation in vivo. TRPM2 is likely to be a key player in several signalling pathways, mediating cell death in response to oxidative stress or in reperfusion injury. Moreover, it plays a decisive role in experimentally induced diabetes mellitus and in the activation of leukocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bessman MJ, Frick DN, O’Handley SF (1996) The MutT proteins or “Nudix” hydrolases, a family of versatile, widely distributed, “housecleaning” enzymes. J Biol Chem 271:25059–25062

    Google Scholar 

  2. Chuang HH, Neuhausser WM, Julius D (2004) The super-cooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive TRP channel. Neuron 43:859–869

    CAS  PubMed  Google Scholar 

  3. De Murcia G, Menissier DM (1994) Poly(ADP-ribose) polymerase: a molecular nick-sensor. Trends Biochem Sci 19:172–176

    CAS  PubMed  Google Scholar 

  4. Du L, Zhang X, Han YY, Burke NA, Kochanek PM, Watkins SC, Graham SH, Carcillo JA, Szabo C, Clark RS (2003) Intra-mitochondrial poly(ADP-ribosylation) contributes to NAD+ depletion and cell death induced by oxidative stress. J Biol Chem 278:18426–18433

    Google Scholar 

  5. Dunn CA, O’Handley SF, Frick DN, Bessman MJ (1999) Studies on the ADP-ribose pyrophosphatase subfamily of the nudix hydrolases and tentative identification of trgB, a gene associated with tellurite resistance. J Biol Chem 274:32318–32324

    Google Scholar 

  6. Fonfria E, Marshall ICB, Benham CD, Boyfield I, Brown JD, Hill K, Hughes JP, Skaper SD, McNulty S (2004) TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br J Pharmacol 143:186–192

    CAS  PubMed  Google Scholar 

  7. Gabelli SB, Bianchet MA, Bessman MJ, Amzel LM (2001) The structure of ADP-ribose pyrophosphatase reveals the structural basis for the versatility of the Nudix family. Nat Struct Biol 8:467–472

    Article  CAS  PubMed  Google Scholar 

  8. Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S, Mori E, Kudoh J, Shimizu N, Kurose H, Okada Y, Imoto K, Mori Y (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9:163–173

    CAS  PubMed  Google Scholar 

  9. Harteneck C, Plant TD, Schulz G (2000) From worm to man: three subfamilies of TRP channels. Trends Neurosci 23:159–166

    Article  CAS  PubMed  Google Scholar 

  10. Heiner I, Eisfeld J, Halaszovich CR, Wehage E, Jüngling E, Zitt C, Lückhoff A (2003) Expression profile of the transient receptor potential (TRP) family in neutrophil granulocytes: evidence for currents through long TRP channel 2 induced by ADP-ribose and NAD. Biochem J 371:1045–1053

    CAS  PubMed  Google Scholar 

  11. Herson PS, Ashford ML (1997) Activation of a novel non-selective cation channel by alloxan and H2O2 in the rat insulin-secreting cell line CRI-G1. J Physiol (Lond) 501:59–66

    Article  CAS  Google Scholar 

  12. Herson PS, Lee K, Pinnock RD, Hughes J, Ashford ML (1999) Hydrogen peroxide induces intracellular calcium overload by activation of a non-selective cation channel in an insulin-secreting cell line. J Biol Chem 274:833–841

    Google Scholar 

  13. Hill K, Benham CD, McNulty S, Randall AD (2004) Flufenamic acid is a pH-dependent antagonist of TRPM2 channels. Neuropharmacology 47:450–460

    CAS  PubMed  Google Scholar 

  14. Hill K, McNulty S, Randall AD (2004) Inhibition of TRPM2 channels by the antifungal agents clotrimazole and econazole. Naunyn-Schmiedeberg’s Arch Pharmacol 370:227–237

    Article  CAS  Google Scholar 

  15. Hofmann T, Chubanov V, Gudermann T, Montell C (2003) TRPM5 is a voltage-modulated and Ca2+-activated monovalent selective cation channel. Curr Biol 13:1153–1158

    CAS  PubMed  Google Scholar 

  16. Inamura K, Sano S, Mochizuki H, Yokoi A, Miyake K, Nozawa C, Kitada H, Matsuhime K, Furuichi K (2003) Response to ADP-ribose by activation of TRPM2 in the CRI-G1 insulinoma cell line. J Membr Biol 191:201–207

    CAS  PubMed  Google Scholar 

  17. Jager H, Dreker T, Buck A, Giehl K, Gress T, Grissmer S (2004) Blockage of intermediate-conductance Ca2+-activated K+ channels inhibit human pancreatic cancer cell growth in vitro. Mol Pharmacol 65:630–638

    Article  PubMed  Google Scholar 

  18. Jankowski A, Grinstein S (1999) A noninvasive fluorimetric procedure for measurement of membrane potential. Quantification of the NADPH oxidase-induced depolarization in activated neutrophils. J Biol Chem 274:26098–26104

    Google Scholar 

  19. Jensen BS, Strobaek D, Christophersen P, Jorgensen TD, Hansen C, Silahtaroglu A, Olesen SP, Ahring PK (1998) Characterization of the cloned human intermediate-conductance Ca2+-activated K+ channel. Am J Physiol 275:C848–C856

    CAS  PubMed  Google Scholar 

  20. Kim SJ, Shin SY, Lee JE, Kim JH, Uhm DY (2003) Ca2+-activated Cl channel currents in rat ventral prostate epithelial cells. Prostate 55:118–127

    CAS  PubMed  Google Scholar 

  21. Kolisek M, Beck A, Fleig A, Penner R (2005) Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels. Mol Cell 18:61–69

    Article  CAS  PubMed  Google Scholar 

  22. Kraft R, Grimm C, Grosse K, Hoffmann A, Sauerbruch S, Kettenmann H, Schultz G, Harteneck C (2004) Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia. Am J Physiol 286:129–137

    Article  Google Scholar 

  23. Krause KH, Campbell KP, Welsh MJ, Lew DP (1990) The calcium signal and neutrophil activation. Clin Biochem 23:159–166

    Article  CAS  PubMed  Google Scholar 

  24. Kühn FJP, Lückhoff A (2004) Sites of the NUDT9-H domain critical for ADP-ribose activation of the cation channel TRPM2. J Biol Chem 279:46431–46437

    Google Scholar 

  25. Lee RJ, Shaw T, Sandquist M, Partridge LD (1996) Mechanism of action of the non-steroidal anti-inflammatory drug flufenamate on [Ca2+]i and Ca2+-activated currents in neurons. Cell Calcium 19:431–438

    Article  CAS  PubMed  Google Scholar 

  26. Liu X, Zweier JL (2001) A real-time electrochemical technique for measurement of cellular hydrogen peroxide generation and consumption: evaluation in human polymorphonuclear leukocytes. Free Radic Biol Med 31:894–901

    Article  CAS  PubMed  Google Scholar 

  27. McHugh D, Flemming R, Xu SZ, Perraud AL, Beech DJ (2003) Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. J Biol Chem 278:11002–11006

    CAS  PubMed  Google Scholar 

  28. Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Bruford EA, Caterina MJ, Clapham DE, Harteneck C, Heller S, Julius D, Kojima I, Mori Y, Penner R, Prawitt D, Scharenberg AM, Schultz G, Shimizu N, Zhu MX (2002) A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 9:229–231

    CAS  PubMed  Google Scholar 

  29. Nagamine K, Kudoh J, Minoshima S, Kawasaki K, Asakawa S, Ito F, Shimizu N (1998) Molecular cloning of a novel putative Ca2+ channel protein (TRPC7) highly expressed in brain. Genomics 54:124–131

    CAS  PubMed  Google Scholar 

  30. Nilius B, Prenen J, Droogmans G, Voets T, Vennekens R, Freichel M, Wissenbach U, Flockerzi V (2003) Voltage dependence of the Ca2+-activated cation channel TRPM4. J Biol Chem 278:30813–30820

    CAS  PubMed  Google Scholar 

  31. Nilius B, Prenen J, Vennekens R, Hoenderop JG, Bindels RJ, Droogmans G (2001) Pharmacological modulation of monovalent cation currents through the epithelial Ca2+ channel ECaC1. Br J Pharmacol 134:453–462

    Article  CAS  PubMed  Google Scholar 

  32. Oliver FJ, Menissier-de Murcia J, Nacci C, Decker P, Andriantsitohaina R, Muller S, de la Rubia G, Stoclet JC, de Murcia G (1999) Resistance to endotoxic shock as a consequence of defective NF-κB activation in poly (ADP-ribose) polymerase-1 deficient mice. EMBO J 18:4446–4454

    Article  CAS  PubMed  Google Scholar 

  33. Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R, Kinet JP, Scharenberg AM (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411:595–599

    CAS  PubMed  Google Scholar 

  34. Perraud AL, Knowles HM, Schmitz C (2004) Novel aspects of signaling and ion-homeostasis regulation in immunocytes. The TRPM ion channels and their potential role in modulating the immune response. Mol Immunol 41:657–673

    CAS  PubMed  Google Scholar 

  35. Perraud AL, Schmitz C, Scharenberg AM (2003) TRPM2 Ca2+ permeable cation channels: from gene to biological function. Cell Calcium 33:519–531

    CAS  PubMed  Google Scholar 

  36. Perraud AL, Shen B, Dunn CA, Rippel K, Smith MK, Bessman MJ, Stoddard BL, Scharenberg AM (2003) NUDT9 a member of the nudix hydrolase family, is an evolutionary conserved mitochondrial ADP-ribose pyrophosphatase. J Biol Chem 278:1794–1801

    CAS  PubMed  Google Scholar 

  37. Perraud AL, Takanishi CL, Shen B, Kang S, Smith MK, Schmitz C, Knowles HM, Ferraris D, Li W, Zhang J, Stoddard BL, Scharenberg AM (2004) Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. J Biol Chem 280:6138–6148

    Google Scholar 

  38. Qian F, Huang P, Ma L, Kuznetsov A, Tamarina N, Philipson LH (2002) TRP genes: candidates for nonselective cation channels and store-operated channels in insulin-secreting cells. Diabetes 51:183–189

    Google Scholar 

  39. Runnels LW, Yue L, Clapham DE (2001) TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291:1043–1047

    CAS  PubMed  Google Scholar 

  40. Sano Y, Inamura K, Miyake A, Mochizuki S, Yokoi H, Matsushime H, Furuichi K (2001) Response to ADP-ribose by activation of TRPM2 in the CRI-G1 insulinoma cell line. Science 293:1327–1330

    Article  CAS  PubMed  Google Scholar 

  41. Shen BW, Perraud AL, Scharenberg A, Stoddard BL (2003) The crystal structure and mutational analysis of human NUDT9. J Mol Biol 332:385–398

    CAS  PubMed  Google Scholar 

  42. Smith MA, Herson PS, Lee K, Pinnock RD, Ashford ML (2003) Hydrogen-peroxide-induced toxicity of rat striatal neurones involves activation of a non-selective cation channel. J Physiol (Lond) 547:417–425

    Google Scholar 

  43. Tanuma S, Yagi T, Johnson GS (1985) Endogenous ADP ribosylation of high mobility group proteins 1 and 2 and histone H1 following DNA damage in intact cells. Arch Biochem Biophys 237:38–42

    Article  CAS  PubMed  Google Scholar 

  44. Thelen M, Dewald B, Baggiolini M (1993) Neutrophil signal transduction and activation of the respiratory burst. Physiol Rev 73:797–821

    CAS  PubMed  Google Scholar 

  45. Uemura T, Kudoh J, Setsuko N, Kanba S, Shimizu N (2005) Characterization of human and mouse TRPM2 genes: identification of a novel N-terminal truncated protein specifically expressed in human striatum. Biochem Biophys Res Commun 328:1232–1243

    CAS  PubMed  Google Scholar 

  46. Virag L, Szabo C (2002) The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 54:375–429

    Google Scholar 

  47. Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B (2004) The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430:748–754

    CAS  PubMed  Google Scholar 

  48. Warner DS, Sheng H, Batinic-Haberle I (2004) Oxidants, antioxidants and the ischemic brain. Exp Biol 207:3221–3231

    Article  CAS  Google Scholar 

  49. Wehage E, Eisfeld J, Heiner I, Jüngling E, Zitt C, Lückhoff A (2002) Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J Biol Chem 277:23150–23156

    CAS  PubMed  Google Scholar 

  50. Zhang W, Chu X, Tong Q, Cheung JY, Conrad K, Masker K, Miller BA (2003) A novel TRPM2 isoform inhibits calcium influx and susceptibility to cell death. J Biol Chem 278:16222–16229

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Lückhoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kühn, F.J.P., Heiner, I. & Lückhoff, A. TRPM2: a calcium influx pathway regulated by oxidative stress and the novel second messenger ADP-ribose. Pflugers Arch - Eur J Physiol 451, 212–219 (2005). https://doi.org/10.1007/s00424-005-1446-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-005-1446-y

Keywords

Navigation