Skip to main content

Advertisement

Log in

Novel Types of Frontotemporal Lobar Degeneration: Beyond Tau and TDP-43

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Most cases of frontotemporal lobar degeneration (FTLD) are characterized by the abnormal accumulation of either the microtubule-associated protein tau or the transactive response DNA-binding protein with Mr 43 kDa, TDP-43 (FTLD-tau and FTLD-TDP, respectively). However, there remain ∼10% of cases, composed of a heterogenous collection of uncommon disorders, for which the molecular basis remains uncertain. In this review, we describe the characteristic genetic, clinical, and pathological features of the major tau/TDP-negative FTLD subtypes, with focus on recent advances in our understanding of their molecular basis. This includes the discovery that the pathological changes in atypical FTLD with ubiquitinated inclusions, neuronal intermediate filament inclusion disease, and basophilic inclusion body disease are immunoreactive for the fused in sarcoma (FUS) protein, resulting in the creation of a new molecular subgroup (FTLD-FUS), and studies clarifying the functional consequences of pathogenic CHMP2B mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahmad ST, Sweeney ST, Lee JA, Sweeney NT, Gao FB (2009) Genetic screen identifies serpin5 as a regulator of the toll pathway and CHMP2B toxicity associated with frontotemporal dementia. Proc Natl Acad Sci USA 106:12168–12173

    Article  PubMed  Google Scholar 

  • Armstrong RA, Gearing M, Bigio EH et al (2010) The spectrum and severity of FUS-immunoreactive inclusions in the frontal and temporal lobes of ten cases of neuronal intermediate filament inclusion disease. Acta Neuropathol 121:219–228

    Article  PubMed  Google Scholar 

  • Baumer D, Hilton D, Paine SML et al (2010) Juvenile ALS with basophilic inclusions is a FUS proteinopathy with FUS mutations. Neurology 75:611–618

    Article  PubMed  CAS  Google Scholar 

  • Belly A, Bodon G, Blot B, Bouron A, Sadoul R, Goldberg Y (2010) CHMP2B mutants linked to frontotemporal dementia impair maturation of dendritic spines. J Cell Sci 123:2943–2954

    Article  PubMed  CAS  Google Scholar 

  • Bigio EH, Lipton AM, White CL III, Dickson DW, Hirano A (2003) Frontotemporal and motor neurone degeneration with neurofilament inclusion bodies: additional evidence for overlap between FTD and ALS. Neuropathol Appl Neurobiol 29:239–253

    Article  PubMed  CAS  Google Scholar 

  • Blair IP, Williams KL, Warraich ST et al (2010) FUS mutations in amyotrophic lateral sclerosis: clinical, pathological, neurophysiological and genetic analysis. J Neurol Neurosurg Psychiatry 81:639–645

    Article  PubMed  Google Scholar 

  • Broustal O, Camuzat A, Guillot-Noel L et al (2010) FUS mutations in frontotemporal lobar degeneration with amyotrophic lateral sclerosis. J Alzheimer's Dis 22:765–769

    CAS  Google Scholar 

  • Brown J, Ashworth A, Gydesen S, Sorensen A, Rossor M, Hardy J et al (1995) Familial non-specific dementia maps to chromosome 3. Hum Mol Genet 4:1625–1628

    Article  PubMed  CAS  Google Scholar 

  • Cairns NJ, Grossman M, Arnold SE et al (2004a) Clinical and neuropathologic variation in neuronal intermediate filament inclusion disease. Neurology 63:1376–1384

    PubMed  CAS  Google Scholar 

  • Cairns NJ, Uryu K, Bigio EH et al (2004b) α-Internexin aggregates are abundant in neuronal intermediate filament inclusion disease (NIFID) but rare in other neurodegenerative diseases. Acta Neuropathol 108:213–223

    Article  PubMed  CAS  Google Scholar 

  • Cairns NJ, Zhukareva V, Uryu K et al (2004c) α-Internexin is present in the pathological inclusions of neuronal intermediate filament inclusion disease. Am J Pathol 164:2153–2161

    Article  PubMed  CAS  Google Scholar 

  • Eskildsen SF, Ostergaard LR, Rodell AB et al (2009) Cortical volumes and atrophy rates in FTD-3 CHMP2B mutation carriers and related non-carriers. Neuroimage 45:713–721

    Article  PubMed  Google Scholar 

  • Filimonenko M, Stuffers S, Raiborg C et al (2007) Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J Cell Biol 179:485–500

    Article  PubMed  CAS  Google Scholar 

  • Fujita K, Ito H, Nakano S, Kinoshita Y, Wate R, Kusaka H (2008) Immunohistochemical identification of messenger RNA-related proteins in basophilic inclusions of adult-onset atypical motor neuron disease. Acta Neuropathol 116:439–445

    Article  PubMed  CAS  Google Scholar 

  • Fujita Y, Fujita S, Takatama M, Ikeda M, Okamoto K (2010) Numerous FUS-positive inclusions in an elderly woman with motor neuron disease. Neuropathology. doi:10.1111/j.1440-1789.2010.01146.x

    PubMed  Google Scholar 

  • Groen EJN, van Es MA, van Vught PWJ et al (2010) FUS mutation sin familial amyotrophic lateral sclerosis in the Netherlands. Arch Neurol 67:224–230

    Article  PubMed  Google Scholar 

  • Gydesen S, Brown JM, Brun A et al (2002) Chromosome 3 linked frontotemporal dementia (FTD-3). Neurology 59:1585–1594

    PubMed  CAS  Google Scholar 

  • Hewitt C, Kirby J, Highley R et al (2010) Novel FUS/TLS mutations and pathology in familial and sporadic amyotrophic lateral sclerosis. Arch Neurol 67:455–461

    Article  PubMed  Google Scholar 

  • Holm IE, Englund E, Mackenzie IR, Johannsen P, Isaacs AM (2007) A reassessment of the neuropathology of frontotemporal dementia linked to chromosome 3. J Neuropathol Exp Neurol 66:884–891

    Article  PubMed  Google Scholar 

  • Holm IE, Isaacs AM, Mackenzie IR (2009) Absence of FUS-immunoreactive pathology in frontotemporal dementia linked to chromosome 3 (FTD-3) caused by mutation in the CHMP2B gene. Acta Neuropathol 118:719–720

    Article  PubMed  CAS  Google Scholar 

  • Huang EJ, Zhang J, Geser F et al (2010) Extensive FUS-immunoreactive pathology in juvenile amyotrophic lateral sclerosis with basophilic inclusions. Brain Pathol 20:1069–1076

    Article  PubMed  CAS  Google Scholar 

  • Isaacs AM, Johannsen P, Holm I, Nielsen JE (2011) Frontotemporal dementia caused by CHMP2B mutations. Curr Alzheimer Res (in press)

  • Josephs KA, Holton JL, Rossor MN et al (2003) Neurofilament inclusion body disease: a new proteinopathy? Brain 126:2291–2303

    Article  PubMed  Google Scholar 

  • Josephs KA, Uchikado H, McComb RD et al (2005) Extending the clinicopathological spectrum of neurofilament inclusion disease. Acta Neuropathol 109:427–432

    Article  PubMed  Google Scholar 

  • Josephs KA, Lin WL, Ahmed Z, Stroh DA, Graff-Radford NR, Dickson DW (2008) Frontotemporal lobar degeneration with ubiquitin-positive, but TDP-43-negative inclusions. Acta Neuropathol 116:159–167

    Article  PubMed  CAS  Google Scholar 

  • Josephs KA, Whitwell JL, Parisi JE et al (2010) Caudate atrophy on MRI is a characteristic feature of FTLD-FUS. Eur J Neurol 17:969–975

    Article  PubMed  CAS  Google Scholar 

  • Katzmann DJ, Odorizzi G, Emr SD (2002) Receptor downregulation and multivesicular-body sorting. Nat Rev Mol Cell Biol 3:893–905

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Z, Tsuchiya K, Arai T et al (2010) Occurrence of basophilic inclusions and FUS-immunoreactive neuronal and glial inclusions in a case of familial amyotrophic lateral sclerosis. J Neurol Sci 293:6–11

    Article  PubMed  Google Scholar 

  • Kwiatkowski TJ, Bosco DA, Leclerc AL et al (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–1208

    Article  PubMed  CAS  Google Scholar 

  • Lee JA, Beigneux A, Ahmad ST, Young SG, Gao FB (2007) ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Curr Biol 17:1561–1567

    Article  PubMed  CAS  Google Scholar 

  • Lindquist SG, Braedgaard H, Svenstrup K, Isaacs AM, Nielsen JE (2008) Frontotemporal dementia linked to chromosome 3 (FTD-3)—current concepts and the detection of a previously unknown branch of the Danish FTD-3 family. Eur J Neurol 15:667–670

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie IR, Feldman H (2004) Neurofilament inclusion body disease with early onset frontotemporal dementia and primary lateral sclerosis. Clin Neuropathol 23:183–193

    PubMed  CAS  Google Scholar 

  • Mackenzie IR, Foti D, Woulfe J, Hurwitz TA (2008) Atypical frontotemporal lobar degeneration with ubiquitin-positive, TDP-43-negative neuronal inclusions. Brain 131:1282–1293

    Article  PubMed  Google Scholar 

  • Mackenzie IR, Neumann M, Bigio EH et al (2009) Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta Neuropathol 117:15–18

    Article  PubMed  Google Scholar 

  • Mackenzie IR, Neumann M, Bigio EH et al (2010a) Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 119:1–4

    Article  PubMed  Google Scholar 

  • Mackenzie IRA, Rademakers R, Neumann M (2010b) TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 9:995–1007

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie IR, Munoz DG, Kusaka H et al (2011) Distinct pathological subtypes of FTLD-FUS. Acta Neuropathol 121:207–218

    Article  PubMed  Google Scholar 

  • Matsuoka T, Fujii N, Kondo A et al (2011) An autopsied case of sporadic adult-onset amyotrophic lateral sclerosis with FUS-positive basophilic inclusions. Neuropathology 31:71–76

    Article  PubMed  Google Scholar 

  • Metcalf D, Isaacs AM (2010) The role of ESCRT proteins in fusion events involving lysosomes, endosomes and autophagosomes. Biochem Soc Trans 38:1469–1473

    Article  PubMed  CAS  Google Scholar 

  • Molina-Porcel L, Llado A, Rey MJ et al (2008) Clinical and pathological heterogeneity of neuronal intermediate filament inclusion disease. Arch Neurol 65:272–275

    Article  PubMed  Google Scholar 

  • Munoz DG, Neumann M, Kusaka H et al (2009) FUS pathology in basophilic inclusion body disease. Acta Neuropathol 118:617–627

    Article  PubMed  CAS  Google Scholar 

  • Munoz-Garcia D, Ludwin SK (1984) Classic and generalized variants of Pick’s disease: a clinicopathological, ultrastructural, and immunohistochemical comparative study. Ann Neurol 16:467–480

    Article  PubMed  CAS  Google Scholar 

  • Neumann M, Rademakers R, Roeber S, Baker M, Kretzschmar HA, Mackenzie IR (2009a) A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain 132:2922–2931

    Article  PubMed  Google Scholar 

  • Neumann M, Roeber S, Kretzschmar HA, Rademakers R, Baker M, Mackenzie IR (2009b) Abundant FUS-immunoreactive pathology in neuronal intermediate filament inclusion disease. Acta Neuropathol 118:605–616

    Article  PubMed  CAS  Google Scholar 

  • Neumann M, Tolnay M, Mackenzie IRA (2009c) The molecular basis of frontotemporal dementia. Exp Rev Mol Med 11:e23

    Article  Google Scholar 

  • Page T, Gitcho MA, Mosaheb M (2011) FUS immunogold labelling TEM analysis of the neuronal cytoplasmic inclusions of neuronal intermediate filament inclusion disease: a frontotemporal lobar degeneration with FUS proteinopathy. J Mol Neurosci (this volume)

  • Rademakers R, Stewart H, DeJesus-Hernandez M et al (2010) FUS gene mutations in familial and sporadic amyotrophic lateral sclerosis. Muscle Nerve 42:170–176

    Article  PubMed  CAS  Google Scholar 

  • Roeber S, Mackenzie IR, Kretzschmar HA, Neumann M (2008) TDP-43-negative FTLD-U is a significant new clinico-pathological subtype of FTLD. Acta Neuropathol 116:147–157

    Article  PubMed  CAS  Google Scholar 

  • Rohrer JD, Ahsan RL, Isaacs AM et al (2009) Presymptomatic generalized brain atrophy in frontotemporal dementia caused by CHMP2B mutation. Dement Geriatr Cogn Disord 27:182–186

    Article  PubMed  Google Scholar 

  • Rohrer JD, Lashley T, Holton J (2011) The clinical and neuroanatomical phenotype of FUS associated frontotemporal lobar degeneration. J Neurol Neurosurg Psychiatry (in press)

  • Rusten TE, Stenmark H (2009) How do ESCRT proteins control autophagy? J Cell Sci 122:2179–2183

    Article  PubMed  CAS  Google Scholar 

  • Seelaar H, Klijnsma KY, de Koning I et al (2010) Frequency of ubiquitin and FUS-positive, TDP-43-negative frontotemporal lobar degeneration. J Neurol 257:747–753

    Article  PubMed  CAS  Google Scholar 

  • Skibinski G, Parkinson NJ, Brown JM et al (2005) Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat Genet 37:806–808

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Aoki M, Warita H et al (2010) FALS with FUS mutation in Japan, with early onset, rapid progress and basophilic inclusions. J Hum Genet 55:252–254

    Article  PubMed  CAS  Google Scholar 

  • Tateishi T, Hokonohara T, Yamasaki R et al (2010) Multiple system degeneration with basophilic inclusions in Japanese ALS patients with FUS mutation. Acta Neuropathol 119:255–364

    Article  Google Scholar 

  • Urwin H, Ghazi-Noori S, Collinge J, Isaacs A (2009) The role of CHMP2B in frontotemporal dementia. Biochem Soc Trans 37:208–212

    Article  PubMed  CAS  Google Scholar 

  • Urwin H, Authier A, Nielsen JE et al (2010a) Disruption of endocytic trafficking in frontotemporal dementia with CHMP2B mutations. Hum Mol Genet 19:2228–2238

    Article  PubMed  CAS  Google Scholar 

  • Urwin H, Josephs KA, Rohrer JD et al (2010b) FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration. Acta Neuropathol 120:33–41

    Article  PubMed  Google Scholar 

  • van der Zee J, Urwin H, Engelborghs S et al (2008) CHMP2B C-truncating mutations in frontotemporal lobar degeneration are associated with an aberrant endosomal phenotype in vitro. Hum Mol Genet 17:313–322

    PubMed  Google Scholar 

  • Van Langenhove T, van der Zee J, Sleegers K et al (2010) Genetic contribution of FUS to frontotemporal lobar degeneration. Neurology 74:366–371

    Article  PubMed  Google Scholar 

  • Vance C, Rogelj B, Hortobagyi T et al (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323:1208–1211

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto-Watanabe Y, Watanabe M, Okamoto K et al (2010) A Japanese ALS6 family with mutation R521C in the FUS/TLS gene: a clinical, pathological and genetic report. J Neurol Sci 296:59–63

    Article  PubMed  CAS  Google Scholar 

  • Yan J, Deng HX, Siddique N et al (2010) Frameshift and novel mutations in FUS in familial amyotrophic lateral sclerosis and ALS/dementia. Neurology 75:807–814

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian R. A. Mackenzie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackenzie, I.R.A., Neumann, M., Cairns, N.J. et al. Novel Types of Frontotemporal Lobar Degeneration: Beyond Tau and TDP-43. J Mol Neurosci 45, 402–408 (2011). https://doi.org/10.1007/s12031-011-9551-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-011-9551-1

Keywords

Navigation