Skip to main content

Advertisement

Log in

Quantitative Assessment of Neuronal Differentiation in Three-dimensional Collagen Gels Using Enhanced Green Fluorescence Protein Expressing PC12 Pheochromocytoma Cells

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

There is a paucity of quantitative methods for evaluating the morphological differentiation of neuronal cells in a three-dimensional (3-D) system to assist in quality control of neural tissue engineering constructs for use in reparative medicine. Neuronal cells tend to aggregate in the 3-D scaffolds, hindering the application of two-dimensional (2-D) morphological methods to quantitate neuronal differentiation. To address this problem, we developed a stable transfectant green fluorescence protein (GFP)-PC12 neuronal cell model, in which the differentiation process in 3-D can be monitored with high sensitivity by fluorescence microscopy. Under 2-D conditions, the green cells showed collagen adherence, round morphology, proliferation properties, expression of the nerve growth factor (NGF) receptors TrkA and p75NTR, stimulation of extracellular signal-regulated kinase phosphorylation by NGF and were able to differentiate in a dose-dependent manner upon NGF treatment, like wild-type (wt)-PC12 cells. When grown within 3-D collagen gels, upon NGF treatment, the GFP-PC12 cells differentiated, expressing long neurite outgrowths. We describe here a new validated method to measure NGF-induced differentiation in 3-D. Having properties similar to those of wt-PC12 and an ability to grow and differentiate in 3-D structures, these highly visualized GFP-expressing PC12 cells may serve as an ideal model for investigating various aspects of differentiation to serve in neural engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Arien-Zakay, H., Nagler, A., Galski, H., & Lazarovici, P. (2007). Neuronal conditioning medium and nerve growth factor induce neuronal differentiation of collagen-adherent progenitors derived from human umbilical cord blood. Journal of Molecular Neuroscience, 32, 179–191. doi:10.1007/s12031-007-0027-2.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin, S. P., Krewson, C. E., & Saltzman, W. M. (1996). PC12 cell aggregation and neurite growth in gels of collagen, laminin and fibronectin. International Journal of Developmental Neuroscience, 14, 351–364. doi:10.1016/0736-5748(96)00018-4.

    Article  PubMed  CAS  Google Scholar 

  • Bieberich, E., & Anthony, G. E. (2004). Neuronal differentiation and synapse formation of PC12 and embryonic stem cells on interdigitated microelectrode arrays: Contact structures for neuron-to-electrode signal transmission (NEST). Biosensors & Bioelectronics, 19, 923–931. doi:10.1016/j.bios.2003.08.016.

    Article  CAS  Google Scholar 

  • Boldrin, L., Elvassore, N., Malerba, A., et al. (2007). Satellite cells delivered by micro-patterned scaffolds: A new strategy for cell transplantation in muscle diseases. Tissue Engineering, 13, 253–262. doi:10.1089/ten.2006.0093.

    Article  PubMed  CAS  Google Scholar 

  • Chao, M., Casaccia-Bonnefil, P., Carter, B., Chittka, A., Kong, H., & Yoon, S. O. (1998). Neurotrophin receptors: Mediators of life and death. Brain Research. Brain Research Reviews, 26, 295–301. doi:10.1016/S0165-0173(97)00036-2.

    Article  PubMed  CAS  Google Scholar 

  • Chia, S. M., Lin, P. C., Quek, C. H., et al. (2005). Engineering microenvironment for expansion of sensitive anchorage-dependent mammalian cells. Journal of Biotechnology, 118, 434–447. doi:10.1016/j.jbiotec.2005.05.012.

    Article  PubMed  CAS  Google Scholar 

  • Dietrich, F., & Lelkes, P. I. (2006). Fine-tuning of a three-dimensional microcarrier-based angiogenesis assay for the analysis of endothelial–mesenchymal cell co-cultures in fibrin and collagen gels. Angiogenesis, 9, 111–125. doi:10.1007/s10456-006-9037-x.

    Article  PubMed  CAS  Google Scholar 

  • Foley, J. D., Grunwald, E. W., Nealey, P. F., & Murphy, C. J. (2005). Cooperative modulation of neuritogenesis by PC12 cells by topography and nerve growth factor. Biomaterials, 26, 3639–3644. doi:10.1016/j.biomaterials.2004.09.048.

    Article  PubMed  CAS  Google Scholar 

  • Fujita, K., Lazarovici, P., & Guroff, G. (1989). Regulation of the differentiation of PC12 pheochromocytoma cells. Environmental Health Perspectives, 80, 127–142. doi:10.2307/3430738.

    Article  PubMed  CAS  Google Scholar 

  • Gomez, N., & Schmidt, C. E. (2007). Nerve growth factor-immobilized polypyrrole: Bioactive electrically conducting polymer for enhanced neurite extension. Journal of Biomedical Materials Research. Part A, 81, 135–149. doi:10.1002/jbm.a.31047.

    Article  PubMed  CAS  Google Scholar 

  • Guo, Y., Li, M., Mylonakis, A., et al. (2007). Electroactive oligoaniline-containing self-assembled monolayers for tissue engineering applications. Biomacromolecules, 8, 3025–3034. doi:10.1021/bm070266z.

    Article  PubMed  CAS  Google Scholar 

  • Guterman, E., Cheng, S., Palouian, K., Bidez, P. R., Lelkes, P. I., & Wei, Y. (2002). Peptide-modified electroactive polymers for tissue engineering applications. Polymer Preprints, 43, 766–767.

    CAS  Google Scholar 

  • Holmes, T. C., de Lacalle, S., Su, X., Liu, G., Rich, A., & Zhang, S. (2000). Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 97, 6728–6733. doi:10.1073/pnas.97.12.6728.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, D. R., & Miller, F. D. (2000). Neurotrophin signal transduction in the nervous system. Current Opinion in Neurobiology, 10, 381–391. doi:10.1016/S0959-4388(00)00092-1.

    Article  PubMed  CAS  Google Scholar 

  • Katzir, I., Shani, J., Regev, K., Shabashov, D., & Lazarovici, P. (2002). A quantitative bioassay for nerve growth factor, using PC12 clones expressing different levels of trkA receptors. Journal of Molecular Neuroscience, 18, 251–264. doi:10.1385/JMN:18:3:251.

    Article  PubMed  CAS  Google Scholar 

  • Kirchner, L. M., Schmidt, S. P., & Gruber, B. S. (1996). Quantitation of angiogenesis in the chick chorioallantoic membrane model using fractal analysis. Microvascular Research, 51, 2–14. doi:10.1006/mvre.1996.0002.

    Article  PubMed  CAS  Google Scholar 

  • Koizumi, S., Contreras, M. L., Matsuda, Y., Hama, T., Lazarovici, P., & Guroff, G. (1988). K-252a: A specific inhibitor of the action of nerve growth factor on PC 12 cells. The Journal of Neuroscience, 8, 715–721.

    PubMed  CAS  Google Scholar 

  • Kosaka, Y., Kobayashi, N., Fukazawa, T., et al. (2004). Lentivirus-based gene delivery in mouse embryonic stem cells. Artificial Organs, 28, 271–277. doi:10.1111/j.1525-1594.2004.47297.x.

    Article  PubMed  CAS  Google Scholar 

  • Laketa, V., Simpson, J. C., Bechtel, S., Wiemann, S., & Pepperkok, R. (2007). High-content microscopy identifies new neurite outgrowth regulators. Molecular Biology of the Cell, 18, 242–252. doi:10.1091/mbc.E06-08-0666.

    Article  PubMed  CAS  Google Scholar 

  • Lazarovici, P., Gazit, A., Staniszewska, I., Marcinkiewicz, C., & Lelkes, P. I. (2006). Nerve growth factor (NGF) promotes angiogenesis in the quail chorioallantoic membrane. Endothelium, 13, 51–59. doi:10.1080/10623320600669053.

    Article  PubMed  CAS  Google Scholar 

  • Leach, J. B., Brown, X. Q., Jacot, J. G., Dimilla, P. A., & Wong, J. Y. (2007). Neurite outgrowth and branching of PC12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity. Journal of Neural Engineering, 4, 26–34. doi:10.1088/1741-2560/4/2/003.

    Article  PubMed  Google Scholar 

  • Levenberg, S., Burdick, J. A., Kraehenbuehl, T., & Langer, R. (2005). Neurotrophin-induced differentiation of human embryonic stem cells on three-dimensional polymeric scaffolds. Tissue Engineering, 11, 506–512. doi:10.1089/ten.2005.11.506.

    Article  PubMed  CAS  Google Scholar 

  • Lopez, C. A., Fleischman, A. J., Roy, S., & Desai, T. A. (2006). Evaluation of silicon nanoporous membranes and ECM-based microenvironments on neurosecretory cells. Biomaterials, 27, 3075–3083. doi:10.1016/j.biomaterials.2005.12.017.

    Article  PubMed  CAS  Google Scholar 

  • Mahoney, M. J., Chen, R. R., Tan, J., & Saltzman, W. M. (2005). The influence of microchannels on neurite growth and architecture. Biomaterials, 26, 771–778. doi:10.1016/j.biomaterials.2004.03.015.

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi, H., Smith, K. A., Mosier, D. E., Verma, I. M., & Torbett, B. E. (1999). Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science, 283, 682–686. doi:10.1126/science.283.5402.682.

    Article  PubMed  CAS  Google Scholar 

  • Mondrinos, M. J., Koutzaki, S., Lelkes, P. I., & Finck, C. M. (2007). A tissue-engineered model of fetal distal lung tissue. American Journal of Physiology. Lung Cellular and Molecular Physiology, 293, L639–L650. doi:10.1152/ajplung.00403.2006.

    Article  PubMed  CAS  Google Scholar 

  • Moxon, K. A., Hallman, S., Aslani, A., Kalkhoran, N. M., & Lelkes, P. I. (2007). Bioactive properties of nanostructured porous silicon for enhancing electrode to neuron interfaces. Journal of Biomaterials Science. Polymer Edition, 18, 1263–1281. doi:10.1163/156856207782177882.

    Article  PubMed  CAS  Google Scholar 

  • Niell, C. M., & Smith, S. J. (2004). Live optical imaging of nervous system development. Annual Review of Physiology, 66, 771–798. doi:10.1146/annurev.physiol.66.082602.095217.

    Article  PubMed  CAS  Google Scholar 

  • Nikolaychik, V. V., Samet, M. M., & Lelkes, P. I. (1996). A new method for continual quantitation of viable cells on endothelialized polyurethanes. Journal of Biomaterials Science. Polymer Edition, 7, 881–891. doi:10.1163/156856296X00057.

    Article  PubMed  CAS  Google Scholar 

  • Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T., & Nishimune, Y. (1997). ‘Green mice’ as a source of ubiquitous green cells. FEBS Letters, 407, 313–319. doi:10.1016/S0014-5793(97)00313-X.

    Article  PubMed  CAS  Google Scholar 

  • Park, K. H., & Yun, K. (2004). Immobilization of Arg-Gly-Asp (RGD) sequence in a thermosensitive hydrogel for cell delivery using pheochromocytoma cells (PC12). Journal of Bioscience and Bioengineering, 97, 374–377.

    PubMed  CAS  Google Scholar 

  • Pittier, R., Sauthier, F., Hubbell, J. A., & Hall, H. (2005). Neurite extension and in vitro myelination within three-dimensional modified fibrin matrices. Journal of Neurobiology, 63, 1–14. doi:10.1002/neu.20116.

    Article  PubMed  CAS  Google Scholar 

  • Pittman, R. N., & DiBenedetto, A. J. (1995). PC12 cells overexpressing tissue plasminogen activator regenerate neurites to a greater extent and migrate faster than control cells in complex extracellular matrix. Journal of Neurochemistry, 64, 566–575.

    Article  PubMed  CAS  Google Scholar 

  • Ravni, A., Bourgault, S., Lebon, A., et al. (2006). The neurotrophic effects of PACAP in PC12 cells: Control by multiple transduction pathways. Journal of Neurochemistry, 98, 321–329. doi:10.1111/j.1471-4159.2006.03884.x.

    Article  PubMed  CAS  Google Scholar 

  • Sales, V. L., Mettler, B. A., Lopez-Ilasaca, M., Johnson Jr, J. A., & Mayer Jr., J. E. (2007). Endothelial progenitor and mesenchymal stem cell-derived cells persist in tissue-engineered patch in vivo: Application of green and red fluorescent protein-expressing retroviral vector. Tissue Engineering, 13, 525–535. doi:10.1089/ten.2006.0128.

    Article  PubMed  CAS  Google Scholar 

  • Saltzman, W. M., Parkhurst, M. R., Parsons-Wingerter, P., & Zhu, W. H. (1992). Three-dimensional cell cultures mimic tissues. Annals of the New York Academy of Sciences, 665, 259–273. doi:10.1111/j.1749-6632.1992.tb42590.x.

    Article  PubMed  CAS  Google Scholar 

  • Schenke-Layland, K., Riemann, I., Damour, O., Stock, U. A., & Konig, K. (2006). Two-photon microscopes and in vivo multiphoton tomographs—Powerful diagnostic tools for tissue engineering and drug delivery. Advanced Drug Delivery Reviews, 58, 878–896. doi:10.1016/j.addr.2006.07.004.

    Article  PubMed  CAS  Google Scholar 

  • Simons, D. M., Gardner, E. M., & Lelkes, P. I. (2006). Dynamic culture in a rotating-wall vessel bioreactor differentially inhibits murine T-lymphocyte activation by mitogenic stimuli upon return to static conditions in a time-dependent manner. Journal of Applied Polymer Science, 100, 1287–1292. doi:10.1152/japplphysiol.00887.2005.

    CAS  Google Scholar 

  • Sirk, D. P., Zhu, Z., Wadia, J. S., & Mills, L. R. (2003). Flow cytometry and GFP: A novel assay for measuring the import and turnover of nuclear-encoded mitochondrial proteins in live PC12 cells. Cytometry. Part A, 56, 15–22.

    Article  CAS  Google Scholar 

  • Suzuki, T., Matsuzaki, T., Hagiwara, H., Aoki, T., & Takata, K. (2007). Recent advances in fluorescent labeling techniques for fluorescence microscopy. Acta Histochemica et Cytochemica, 40, 131–137. doi:10.1267/ahc.07023.

    Article  PubMed  CAS  Google Scholar 

  • Takezawa, T., Takeuchi, T., Nitani, A., et al. (2007). Collagen vitrigel membrane useful for paracrine assays in vitro and drug delivery systems in vivo. Journal of Biotechnology, 131, 76–83. doi:10.1016/j.jbiotec.2007.05.033.

    Article  PubMed  CAS  Google Scholar 

  • Takman, R., Jiang, H., Schaefer, E., Levine, R. A., & Lazarovici, P. (2004). Nerve growth factor pretreatment attenuates oxygen and glucose deprivation-induced c-Jun amino-terminal kinase 1 and stress-activated kinases p38alpha and p38beta activation and confers neuroprotection in the pheochromocytoma PC12 Model. Journal of Molecular Neuroscience, 22, 237–250. doi:10.1385/JMN:22:3:237.

    Article  PubMed  Google Scholar 

  • Tan, W., Vinegoni, C., Norman, J. J., Desai, T. A., & Boppart, S. A. (2007). Imaging cellular responses to mechanical stimuli within three-dimensional tissue constructs. Microscopy Research and Technique, 70, 361–371. doi:10.1002/jemt.20420.

    Article  PubMed  Google Scholar 

  • Tatard, V. M., Venier-Julienne, M. C., Benoit, J. P., Menei, P., & Montero-Menei, C. N. (2004). In vivo evaluation of pharmacologically active microcarriers releasing nerve growth factor and conveying PC12 cells. Cell Transplantation, 13, 573–583. doi:10.3727/000000004783983675.

    Article  PubMed  CAS  Google Scholar 

  • Tohill, M. P., Mann, D. J., Mantovani, C. M., Wiberg, M., & Terenghi, G. (2004). Green fluorescent protein is a stable morphological marker for Schwann cell transplants in bioengineered nerve conduits. Tissue Engineering, 10, 1359–1367.

    PubMed  CAS  Google Scholar 

  • Vaudry, D., Stork, P. J., Lazarovici, P., & Eiden, L. E. (2002). Signaling pathways for PC12 cell differentiation: Making the right connections. Science, 296, 1648–1649. doi:10.1126/science.1071552.

    Article  PubMed  CAS  Google Scholar 

  • Willits, R. K., & Skornia, S. L. (2004). Effect of collagen gel stiffness on neurite extension. Journal of Biomaterials Science. Polymer Edition, 15, 1521–1531. doi:10.1163/1568562042459698.

    Article  PubMed  CAS  Google Scholar 

  • Yu, X., Dillon, G. P., & Bellamkonda, R. B. (1999). A laminin and nerve growth factor-laden three-dimensional scaffold for enhanced neurite extension. Tissue Engineering, 5, 291–304. doi:10.1089/ten.1999.5.291.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, G., Liu, W., Cui, L., Wang, X., Liu, T., & Cao, Y. (2006). Repair of porcine articular osteochondral defects in non-weightbearing areas with autologous bone marrow stromal cells. Tissue Engineering, 12, 3209–3221. doi:10.1089/ten.2006.12.3209.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Stein Family Foundation, Philadelphia, PA (PIL and PL), the Nanotechnology Institute of Southeastern Pennsylvania (PIL), and the United States–Israel Binational Science Foundation (PL). PL is affiliated with and supported in part by the David R. Bloom Center for Pharmacy and the Dr. Adolf and Klara Brettler Center for Research in Molecular Pharmacology and Therapeutics at The Hebrew University of Jerusalem, Israel. SL is supported by an “Eshkol” fellowship from The Israel Ministry of Science, Culture and Sport.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Lazarovici.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arien-Zakay, H., Lecht, S., Perets, A. et al. Quantitative Assessment of Neuronal Differentiation in Three-dimensional Collagen Gels Using Enhanced Green Fluorescence Protein Expressing PC12 Pheochromocytoma Cells. J Mol Neurosci 37, 225–237 (2009). https://doi.org/10.1007/s12031-008-9123-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9123-1

Keywords

Navigation