Skip to main content

Three Dimensional Cell Culture of Human Neural Stem Cells Using Polysaccharide-Based Hydrogels and Subsequent Bioanalyses

  • Protocol
  • First Online:
MicroRNA Technologies

Part of the book series: Neuromethods ((NM,volume 128))

Abstract

Protocols for culturing neural stem cells (NSCs) are increasingly finding utilization for studying and growing of tissues that can appropriately model the neural regeneration processes. Two-dimensional (2D) plastic or glass surface-enabled mammalian cell cultures have been the platforms for performing in vitro cell cultures. Isolated mammalian cells, however, come from three-dimensional (3D) spaces, thus recapitulating such 3D microenvironments is among the challenges for many tissue engineering applications. Herein, we present the protocols for culturing NSCs in 3D polysaccharide-based hydrogel microenvironments that mimic, for instance, the native extracellular matrix (ECM) space (of the brain). The protocols include three key steps: (1) generation of 3D hydrogels with living cells, (2) culturing NSCs in 3D environments, and (3) characterization via immunostaining and genetic expression assay (RT-qPCR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Reynolds BA, Tetzlaff W, Weiss S (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12(11):4565–4574

    CAS  PubMed  Google Scholar 

  2. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710

    Article  CAS  PubMed  Google Scholar 

  3. Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11(1):173–189

    Article  CAS  PubMed  Google Scholar 

  4. Lois C, Alvarez-Buylla A (1993) Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci U S A 90(5):2074–2077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Doetsch F, García-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17(13):5046–5061

    CAS  PubMed  Google Scholar 

  6. Gage FH, Kempermann G, Palmer TD, Peterson DA, Ray J (1998) Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol 36(2):249–266

    Article  CAS  PubMed  Google Scholar 

  7. Gage FH (2000) Mammalian neural stem cells. Science 287(5457):1433–1438

    Article  CAS  PubMed  Google Scholar 

  8. Temple S (2001) The development of neural stem cells. Nature 414(6859):112–117

    Article  CAS  PubMed  Google Scholar 

  9. Doetsch F, Hen R (2005) Young and excitable: the function of new neurons in the adult mammalian brain. Curr Opin Neurobiol 15(1):121–128

    Article  CAS  PubMed  Google Scholar 

  10. Carleton A, Petreanu LT, Lansford R, Alvarez-Buylla A, Lledo P-M (2003) Becoming a new neuron in the adult olfactory bulb. Nat Neurosci 6(5):507–518

    CAS  PubMed  Google Scholar 

  11. Belluzzi O, Benedusi M, Ackman J, LoTurco JJ (2003) Electrophysiological differentiation of new neurons in the olfactory bulb. J Neurosci 23(32):10411–10418

    CAS  PubMed  Google Scholar 

  12. van Praag H et al (2002) Functional neurogenesis in the adult hippocampus. Nature 415(6875):1030–1034

    Article  PubMed  Google Scholar 

  13. Jessberger S, Kempermann G (2003) Adult‐born hippocampal neurons mature into activity‐dependent responsiveness. Eur J Neurosci 18(10):2707–2712

    Article  PubMed  Google Scholar 

  14. Ge S et al (2006) GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439(7076):589–593

    Article  CAS  PubMed  Google Scholar 

  15. Addington C et al (2015) Enhancing neural stem cell response to SDF-1α gradients through hyaluronic acid-laminin hydrogels. Biomaterials 72:11–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stabenfeldt SE, García AJ, LaPlaca MC (2006) Thermoreversible laminin‐functionalized hydrogel for neural tissue engineering. J Biomed Mater Res A 77(4):718–725

    Article  PubMed  Google Scholar 

  17. Jin K et al (2010) Transplantation of human neural precursor cells in Matrigel scaffolding improves outcome from focal cerebral ischemia after delayed postischemic treatment in rats. J Cereb Blood Flow Metab 30(3):534–544

    Article  PubMed  Google Scholar 

  18. Uemura M et al (2010) Matrigel supports survival and neuronal differentiation of grafted embryonic stem cell‐derived neural precursor cells. J Neurosci Res 88(3):542–551

    CAS  PubMed  Google Scholar 

  19. Banerjee A et al (2009) The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials 30(27):4695–4699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li X et al (2006) Culture of neural stem cells in calcium alginate beads. Biotechnol Prog 22(6):1683–1689

    Article  CAS  PubMed  Google Scholar 

  21. Prang P et al (2006) The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Biomaterials 27(19):3560–3569

    CAS  PubMed  Google Scholar 

  22. Ashton RS, Banerjee A, Punyani S, Schaffer DV, Kane RS (2007) Scaffolds based on degradable alginate hydrogels and poly (lactide-co-glycolide) microspheres for stem cell culture. Biomaterials 28(36):5518–5525

    Article  CAS  PubMed  Google Scholar 

  23. Wadowsky RM, Laus S, Libert T, States SJ, Ehrlich GD (1994) Inhibition of PCR-based assay for Bordetella pertussis by using calcium alginate fiber and aluminum shaft components of a nasopharyngeal swab. J Clin Microbiol 32(4):1054–1057

    CAS  PubMed  PubMed Central  Google Scholar 

  24. White EJ, Venter M, Hiten NF, Burger JT (2008) Modified cetyltrimethylammonium bromide method improves robustness and versatility: the benchmark for plant RNA extraction. Biotechnol J 3(11):1424–1428

    Article  CAS  PubMed  Google Scholar 

  25. Wang L, Stegemann JP (2010) Extraction of high quality RNA from polysaccharide matrices using cetyltrimethylammonium bromide. Biomaterials 31(7):1612–1618

    Article  CAS  PubMed  Google Scholar 

  26. Köster N et al (2016) Single-step RNA extraction from different hydrogel-embedded mesenchymal stem cells for quantitative reverse transcription-polymerase chain reaction analysis. Tissue Eng Part C Methods 22(6):552–560

    Article  PubMed  Google Scholar 

  27. Donato R et al (2007) Differential development of neuronal physiological responsiveness in two human neural stem cell lines. BMC Neuroscience 8:11

    Google Scholar 

  28. Burdick JA, Chung C, Jia X, Randolph MA, Langer R (2005) Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 6(1):386–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Seidlits SK et al (2010) The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation. Biomaterials 31(14):3930–3940

    Article  CAS  PubMed  Google Scholar 

  30. Williams CG, Malik AN, Kim TK, Manson PN, Elisseeff JH (2005) Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 26(11):1211–1218

    Article  CAS  PubMed  Google Scholar 

  31. Seidlits S et al (2010) The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation. Biomaterials 31(14):3930–3940

    Article  CAS  PubMed  Google Scholar 

  32. Cao N, Chen X, Schreyer D (2012) Influence of calcium ions on cell survival and proliferation in the context of an alginate hydrogel. ISRN Chem Eng. doi:10.5402/2012/516461

    Google Scholar 

  33. Wilson IG (1997) Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 63(10):3741

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Monteiro L et al (1997) Complex polysaccharides as PCR inhibitors in feces: Helicobacter pylori model. J Clin Microbiol 35(4):995–998

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Demeke T, Adams R (1992) The effects of plant polysaccharides and buffer additives on PCR. Biotechniques 12(3):332–334

    CAS  PubMed  Google Scholar 

  36. Westhrin M et al (2015) Osteogenic differentiation of human mesenchymal stem cells in mineralized alginate matrices. PLoS One 10(3):e0120374

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sawicki L, Kloxin A (2014) Design of thiol-ene photoclick hydrogels using facile techniques for cell culture applications. Biomat Sci 2(11):1612–1626

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been funded by Temple University and the GDFI Braincell Laboratory Co., Ltd., Seoul, South Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won H. Suh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jin, Gw., Ma, W., Suh, W.H. (2016). Three Dimensional Cell Culture of Human Neural Stem Cells Using Polysaccharide-Based Hydrogels and Subsequent Bioanalyses. In: Kye, M. (eds) MicroRNA Technologies. Neuromethods, vol 128. Humana Press, New York, NY. https://doi.org/10.1007/7657_2016_11

Download citation

  • DOI: https://doi.org/10.1007/7657_2016_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7173-2

  • Online ISBN: 978-1-4939-7175-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics